

Teaching a Computer to Integrate

C. Gao, J. Isaacson, and C. Krause (2020), 2001.05486
C. Gao, S. Hoche, J. Isaacson, C. Krause, and H. Schulz (2020), 2001.10028

BNL Wednesday March 4th 2020

LHC requires large number of MC events

Why MC simulation so expensive

Stefan Hoche, Stefan Prestel, Holger Schulz [1905.05120;PRD]

- Matrix element evaluation is more expensive than showering

Unweighting high-multiplicity events is expensive

Outline

- Review of MC techniques and traditional approaches
- Introduction of i-flow: a MC integrator based on Normalizing Flow
- Applications of i-flow

Monte Carlo Integration

$I=\int_{\Omega} d^{D} x f(\vec{x}) \approx \frac{V}{N} \sum_{i}^{N} f(\vec{x}) \equiv V\langle f\rangle_{x}$

- $V=$ volume of domain Ω
. uncertainty: $\Delta I=V \sqrt{\frac{\left\langle f^{2}\right\rangle_{x}-\langle f\rangle_{x}^{2}}{N-1}}=\frac{\sigma_{N}}{\sqrt{N-1}}$

Importance Sampling

$I=\int d^{D} x g(\vec{x}) \frac{f(\vec{x})}{g(\vec{x})}=V\langle f / g\rangle_{G}$

- g resembles the shape of f (ideally $g \rightarrow f / I$)
- sample uniformly in $d^{D} G=g(\vec{x}) d^{D} x$
.uncertainty: $\Delta I=V \sqrt{\frac{\left\langle(f / g)^{2}\right\rangle_{x}-\langle f / g\rangle_{x}^{2}}{N-1}}$

MC Integrator: VEGAS

Peter Lepage 1980

- assume integrand factorizes: $f(\vec{x})=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{D}\left(x_{D}\right)$
- approximate each dimension with a histogram

- adjust the bin widths such that areas are equal
- to sample?

MC Integrator: VEGAS

Peter Lepage 1980

MC Integrator: FOAM

- use a cellular approximation with the first cell covering entire Ω
- build a grid by subsequent binary splits of existing cells
- to sample?
- but $\sim\left(\bar{N}_{\text {bins }}\right)^{D}$ cells required

MC Integrator: NN based
 Bendavid [1707.00028]

Klimek/Perelstein [1810.11509]

- $g=$ Neural Network or BDT
. example of loss: $D_{K L}=\int d x f(x) \log \left(\frac{f}{g}\right)$
- but, sampling requires inverting NN (i.e. computing Jacobian determinant of a large matrix) $\sim \mathcal{O}\left(D^{3}\right)$

i-flow: MC Integrator with Normalizing Flows

- $g=$ Coupling Layer based Normalizing Flow
- improves sampling efficiency $\sim \mathcal{O}(D)$
- supervised learning with an "infinite" data set

Normalizing Flow

Normalizing Flow

- $\vec{x}_{K}=c_{K}\left(c_{K-1}\left(\cdots c_{2}\left(c_{1}(\vec{x})\right)\right), c_{i}\right.$ is bijective
- If $x \sim g_{0}(x)$, then

$$
x_{K} \sim g_{K}=g_{0} \prod_{k=1}^{K}\left|\frac{\partial c_{k}\left(\vec{x}_{k-1}\right)}{\partial \vec{x}_{k-1}}\right|^{-1}, \vec{x}_{0}=\vec{x}
$$

- Coupling Layer is a special bijection, expressive but cheap in Jacobian computation

Coupling Layer

- C is an easy, invertible Coupling Transform function
$g_{y}=|\partial y / \partial x|^{-1} g_{x},\left|\frac{\partial y}{\partial x}\right|^{-1}=\left|\left(\begin{array}{cc}\overrightarrow{1} & 0 \\ \frac{\partial C}{\partial m} \frac{\partial m}{\partial x_{A}} & \frac{\partial C}{\partial x_{B}}\end{array}\right)\right|^{-1}=\left|\frac{\partial C\left(x_{B} ; m\left(x_{A}\right)\right)}{\partial x_{B}}\right|^{-1}$
- e.g. Affine CT: $C\left(x_{B} ; s, t\right)=x_{B} \odot e^{s}+t \quad s, t \in \mathbb{R}^{|B|} \quad\left|\partial C / \partial x_{B}\right|=e^{\sum s_{i}}$

Coupling Transform: Piecewise Polynomial

- domain and co-domain are restricted to unit hypercube
- separability: $C\left(x_{B} ; m\left(x_{A}\right)\right)=\left(C_{1}\left(x_{B_{1}} ; m\right), C_{2}\left(x_{B_{2}} ; m\right), \cdots, C_{|B|}\left(x_{B|B|} ; m\right)\right)^{T}$
- if $y \sim g_{y}$ is uniform, then C_{i} acts as the cumulative distribution function (CDF) of $x_{B_{i}}: \quad \partial C_{i}\left(x_{B} ; m\left(x_{A}\right)\right)=g_{x} \partial x_{B_{i}}$
- each CDF can be modeled by a piecewise monotonically increasing polynomial

Example: PW Linear

Muller et al. [1808.03856]

Given fixed bin width w, NN predicts pdf bin heights $\sim Q_{i}$

$$
C_{i}\left(x_{B i} ; Q\right)=\alpha Q_{i b}+\sum_{k=1}^{b-1} Q_{i k}
$$

$$
\begin{gathered}
b=\left\lfloor\frac{x_{B_{i}}}{w}\right\rfloor \quad \alpha=\frac{x_{B_{i}}-(b-1) w}{w} \\
\left|\frac{\partial C\left(x_{B} ; Q\right)}{\partial x_{B}}\right|=\prod_{i}\left|\frac{\partial C_{i}\left(x_{B_{i}} ; Q\right)}{\partial x_{B_{i}}}\right|=\prod_{i} \frac{Q_{i b}}{w}
\end{gathered}
$$

Coupling Transform: Rational Quadratic Spline

Durkan et al. [1906.04032]

NN predicts widths, heights, and derivatives of each knot of the spline.

How many CLs in a flow?

Normalizing Flow: $\vec{x}_{K}=c_{K}\left(c_{K-1}\left(\cdots c_{2}\left(c_{1}(\vec{x})\right)\right)\right.$ $c_{i}=$ NN based CL that transforms roughly half of \vec{x}

- capture all the correlations between every dimension
- transform (or train) each dimension equal number of times
- as few CLs as possible

How many CLs in a flow?

- minimum: 4 layers
- maximum: $2\left\lceil\log _{2} D\right\rceil$, see example below.
- One means transform, zero means pass through. The transpose of the matrix and its binary negation give the max layers required.

Dimension	0	1	2	3	4	5	6	7	8	9	10	11
\Rightarrow	0	0	0	0	0	0	0	0	1	1	1	1
\Rightarrow	0	0	0	0	1	1	1	1	0	0	0	0
\Rightarrow	0	0	1	1	0	0	1	1	0	0	1	1
\Rightarrow	0	1	0	1	0	1	0	1	0	1	0	1

Finding the unique masking to capture all correlations in an $D=12$ space

Toy Example: Integration

$$
\begin{aligned}
& f_{\text {gaussian }}(\vec{x})=(\alpha \sqrt{\pi})^{-n} e^{-\sum_{i}\left(x_{i}-\frac{1}{2}\right)^{2 / / \alpha}} \\
& f_{\text {camel }}(\vec{x})=\frac{1}{2}(\alpha \sqrt{\pi})^{-n}\left(e^{-\sum_{i}\left(x_{i}-\frac{1}{3}\right)^{2} / \alpha^{2}}+e^{-\sum_{i}\left(x_{i}-\frac{2}{3}\right)^{2} / \alpha^{2}}\right)
\end{aligned}
$$

- Results on 1 M sample after training with 5 M points
- VEGAS: 100 bins
- FOAM: 1000 points /cell
- i-flow: $2\left\lceil\log _{2} D\right\rceil$ coupling layers, piecewise rational quadratic spline w. 16 bins in each dimension, DNN w. 5 layers, and other hyper-parameters

Toy Example: Integration

$$
f_{\text {gaussian }}(\vec{x})=(\alpha \sqrt{\pi})^{-n} e^{-\sum_{i}\left(x_{i}-\frac{1}{2}\right)^{2} / \alpha^{2}} \quad f_{\text {camel }}(\vec{x})=\frac{1}{2}(\alpha \sqrt{\pi})^{-n}\left(e^{-\sum_{i}\left(x_{i}-\frac{1}{3}\right)^{2} / \alpha^{2}}+e^{-\sum_{i}\left(x_{i}-\frac{2}{3}\right)^{2} / \alpha^{2}}\right)
$$

	Dim	VEGAS	Foam	i-flow	Exp
	2	$0.99897(20)$	$0.99907(5)$	$0.99923(5)$	0.999186
Gaussian	4	$0.99856(29)$	$0.999(35)$	$0.99847(5)$	0.998373
$(\alpha=0.2)$	8	$0.99709(42)$	$0.99780(320)$	$0.99684(8)$	0.996749
	16	$0.99330(61)$	$0.72388(11428)$	$0.99327(23)$	0.993509
	2	$0.98112(89)$	$0.98169(5)$	$0.98171(4)$	0.98166
Camel	4	$0.96378(222)$	$0.96366(30)$	$0.96389(25)$	0.963657
$(\alpha=0.2)$	8	$0.87752(759)$	$0.93007(142)$	$0.92788(44)$	0.928635
	16	$0.43139(25)$	$0.96498(17337)$	$0.86153(104)$	0.862363

$\underline{\left(I_{\text {code }}-I_{\text {true }}\right)}$		Dim	VEGAS	Foam	i-flow
	Gaussian	2	-1.08	-2.32	0.88
		4	0.65	4.11	1.94
		8	0.81	0.33	1.14
		16	-0.34	-2.36	-1.04
$\Delta I_{\text {code }}$	Camel	2	-0.61	0.6	1.25
		4	0.06	-0.32	0.93
		8	-6.73	1.01	-1.72
		16	-1723.89	0.59	-0.8

Toy Example: Integration

BUT, i-flow converges slower than VEGAS or FOAM

(a) 4-dimensional Gaussian

(b) 4-dimensional Camel

Toy Example: Sampling with i-flow

$$
\begin{aligned}
& f_{3}\left(x_{1}, x_{2}\right)=x_{2}^{a} \exp \left\{-w\left|\left(x_{2}-p_{2}\right)^{2}+\left(x_{1}-p_{1}\right)^{2}-r^{2}\right|\right\} \\
& \quad+\left(1-x_{2}\right)^{a} \exp \left\{-w\left|\left(x_{2}-1+p_{2}\right)^{2}+\left(x_{1}-1+p_{1}\right)^{2}-r^{2}\right|\right\}
\end{aligned}
$$

Weights of 1M points sampled,
unweighting efficiency: $\frac{\langle f / g\rangle}{\max (f / g)}=19.5 \%$

$$
\left(p_{1}=0.4, p_{2}=0.6, r=0.25, w=1 / 0.004, a=3\right)
$$

Toy Example: Sampling with i-flow

$$
f_{4}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
1 & 0.2<\sqrt{x_{1}^{2}+x_{2}^{2}}<0.45 \\
0 & \text { else }
\end{array}\right.
$$

7500 points sampled: 6720 inside, 780 outside, nearly 90% cut efficiency

Physics Application

i-flow + Sherpa: Phase Space Integration

- Sherpa computes matrix element squared with color sampling
- recursive multi-channel algorithm maps the integration domain in i-flow (a unit hypercube) to physical variables: $n_{\text {dim }}=\left(3 n_{f}-4\right)+\left(n_{f}-1\right)+n_{\text {ihadrons }}$
- integrating over final color configurations adds $2 n_{c}-1$ more variables

Example: $e^{+} e^{-} \rightarrow j j j$

$$
\begin{aligned}
& \sigma_{N N}=4887.1 \pm 4.6 p b \\
& \sigma_{\text {Sherpa }}=4887.0 \pm 17.7 p b
\end{aligned}
$$

Example: $p p \rightarrow V+$ jets

unweighting efficiency$\langle w\rangle / w_{\max }$		$n=0$	$n=1$	$\begin{gathered} \text { LO QCD } \\ n=2 \end{gathered}$	$n=3$	$n=4$	$\begin{aligned} & \mathrm{NLO} \\ & n=0 \end{aligned}$	$\begin{array}{r} \mathrm{CD}(\mathrm{RS}) \\ n=1 \end{array}$
$W^{+}+n$ jets	Sherpa	$2.8 \cdot 10^{-1}$	$3.8 \cdot 10^{-2}$	$7.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$8.3 \cdot 10^{-4}$	$9.5 \cdot 10^{-2}$	$4.5 \cdot 10^{-3}$
	NN+NF	$6.1 \cdot 10^{-1}$	$1.2 \cdot 10^{-1}$	$1.0 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	$8.9 \cdot 10^{-4}$	$1.6 \cdot 10^{-1}$	$4.1 \cdot 10^{-3}$
	Gain	2.2	3.3	1.4	1.2	1.1	1.6	0.91
$W^{-}+n$ jets	Sherpa	$2.9 \cdot 10^{-1}$	$4.0 \cdot 10^{-2}$	$7.7 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$	$9.7 \cdot 10^{-4}$	$1.0 \cdot 10^{-1}$	$4.5 \cdot 10^{-3}$
	NN+NF	$7.0 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$	$1.1 \cdot 10^{-2}$	$2.2 \cdot 10^{-3}$	$7.9 \cdot 10^{-4}$	$1.5 \cdot 10^{-1}$	$4.2 \cdot 10^{-3}$
	Gain	2.4	3.3	1.4	1.1	0.82	1.5	0.91
$Z+n$ jets	Sherpa	$3.1 \cdot 10^{-1}$	$3.6 \cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$		$1.2 \cdot 10^{-1}$	$5.3 \cdot 10^{-3}$
	NN+NF	$3.8 \cdot 10^{-1}$	$1.0 \cdot 10^{-1}$	$1.4 \cdot 10^{-2}$	$2.4 \cdot 10^{-3}$		$1.8 \cdot 10^{-3}$	$5.7 \cdot 10^{-3}$
	Gain	1.2	2.9	0.91	0.51		1.5	1.1

TABLE II: Unweighting efficiencies at the LHC at $\sqrt{s}=14 \mathrm{TeV}$ using the NNPDF 3.0 NNLO PDF set and a correspondingly defined strong coupling. Jets are identified using the k_{T} clustering algorithm with $R=0.4, p_{T, j}>20 \mathrm{GeV}$ and $\left|\eta_{j}\right|<6$. In the case of Z / γ^{*} production, we also apply the invariant mass cut $66<m_{l l}<116 \mathrm{GeV}$.

Why does it not work so well for $n \geq 2$ jets?

- Discrete variables like multi-channel or color can not be modeled well by a continuous distribution.
- After all, it is a MC technique, to get the corners right requires some luck or a very large number of samples to train, which then runs into memory problem.

Anomaly Detection w. i-flow

Nachman, Shih. [2001.04990]

- Pick an observable \mathcal{O} reconstructed from data and define a signal region (SR), e.g. invariant mass of di-jets
- Learn two distributions on a set of other kinematic features $\left\{x_{i}\right\}$ for SR and the side bands (SB) conditioned on \mathcal{O} :
$P_{S R}\left(x_{i} \mid \mathcal{O} \in S R\right), P_{S B}\left(x_{i} \mid \mathcal{O} \notin S R\right)$
- Interpolate $P_{S B}$ into SR and calculate the likelihood ratio
$R=\frac{P_{S R}\left(x_{i} \mid \mathcal{O} \in S R\right)}{P_{S B}\left(x_{i} \mid \mathcal{O} \in S R\right)}$
- $R \approx 1$ for SM backgrounds but bigger than 1 for BSM events.

Conclusion

- as a MC Integrator, compared to VEGAS and FOAM, i-flow is the only one that performs consistently up to high dimensions ($D \gtrsim 8$)
- as a MC event generator, the unweighting efficiency exceeds that of traditional methods by a factor of 2 to 3 in simple processes ($\mathrm{V}+0,1$ jet $)$
- code available at https://gitlab.com/i-flow/i-flow

Back-up: more examples

	Dim	VEGAS	Foam	i-flow	Exp
	2	$0.99897(20)$	$0.99907(5)$	$0.99923(5)$	0.999186
Gaussian	4	$0.99856(29)$	$0.99981(35)$	$0.99847(5)$	0.998373
	8	$0.99709(42)$	$0.99780(320)$	$0.99684(8)$	0.996749
	16	$0.99330(61)$	$0.72388(11428)$	$0.99327(23)$	0.993509
	2	$0.98112(89)$	$0.98169(5)$	$0.98171(4)$	0.98166
Camel	4	$0.96378(222)$	$0.96356(30)$	$0.96389(25)$	0.963657
	8	$0.87752(759)$	$0.93007(142)$	$0.92788(44)$	0.928635
	16	$0.43139(25)$	$0.96498(17337)$	$0.86153(104)$	0.862363
Entangled circles	2	$0.013675(44)$	$0.013685(3)$	$0.013692(8)$	0.0136848
Ring w. cuts	2	$0.51122(57)$	$0.51083(16)$	$0.51062(21)$	0.510508
Scalar-top-loop	3	$1.93687(32) \mathrm{e}-10$	$1.93699(1) \mathrm{e}-10$	$1.93696(1) \mathrm{e}-10$	$1.936964 \mathrm{e}-10$

		Dim	VEGAS	Foam	i-flow
	Gaussian	2	-1.08	-2.32	0.88
		4	0.65	4.11	1.94
		8	0.81	0.33	1.14
$\left(I_{\text {code }}-I_{\text {true }}\right)$		16	-0.34	-2.36	-1.04
	Camel	2	-0.61	0.6	1.25
$\Delta I_{c o d e}$		4	0.06	-0.32	0.93
		8	-6.73	1.01	-1.72
		16	-1723.89	0.59	-0.8
	Entangled circles	2	-0.23	0.07	0.87
	Ring w. cuts	2	1.24	2.01	0.53
	Scalar-top-loop	3	-0.29	2.6	-0.45
	32				

Back-up: Hyper-parameter Optimization for $W+1$ jet

Parameter	$c_{\min }$	$c_{\max }$ prior	$c_{\text {best }}$	
learning rate	10^{-5}	10^{-2}	\log	$4.55 \cdot 10^{-4}$
LR decay	0	1	lin	0.534
LR step size	2	10	lin	5
$N_{\text {nodes }}^{\max }$	2^{5}	2^{9}	lin	2^{9}

Parameter	$c_{\min }$	$c_{\text {max }}$	prior	$c_{\text {best }}$
$N_{\text {samples }}$	1000	10000	\log	4148
$N_{\text {epochs }}$	500	5000	\log	3824
$N_{\text {bins }}$	10	100	\log	16
$N_{\text {layers }}$	6	10	lin	8

