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Teaching a Computer to Integrate
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LHC requires large number 
of MC events

budget
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W ++jets, LHC@14TeV

pT,j > 20GeV, |⌘j| < 6

WTA (> 6j)

parton level

particle level

particle level

Stefan Hoche, Stefan Prestel, Holger Schulz [1905.05120;PRD]  

Why MC simulation  
so expensive

Matrix  
Element

• Matrix element evaluation is more expensive than showering


• Unweighting high-multiplicity events is expensive

Shower
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Outline

• Review of MC techniques and traditional approaches


• Introduction of i-flow: a MC integrator based on 
Normalizing Flow


• Applications of i-flow
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• 


•  = volume of domain 


• uncertainty: 

I = ∫Ω
dDx f ( ⃗x ) ≈

V
N

N

∑
i

f ( ⃗x ) ≡ V⟨ f⟩x

V Ω

ΔI = V
⟨ f2⟩x − ⟨ f⟩2

x

N − 1
=

σN

N − 1

Monte Carlo Integration
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•  


•  resembles the shape of   ( ideally  )


• sample uniformly in 


• uncertainty:  

I = ∫ dDx g ( ⃗x )
f ( ⃗x )
g ( ⃗x )

= V⟨ f/g⟩G

g f g → f/I

dDG = g ( ⃗x ) dDx

ΔI = V
⟨( f/g)2⟩x − ⟨ f/g⟩2

x

N − 1

Importance Sampling

6



• assume integrand factorizes: 



• approximate each dimension 
with a histogram


• adjust the bin widths such that 
areas are equal


• to sample?

f( ⃗x ) = f1(x1) f2(x2) ⋯ fD(xD)

MC Integrator: VEGAS
Peter Lepage 1980 
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MC Integrator: VEGAS
What if non-factorizable?f ( ⃗x )

Peter Lepage 1980 
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MC Integrator: FOAM
• use a cellular 

approximation with the 
first cell covering entire 


• build a grid by 
subsequent binary splits 
of existing cells


• to sample?


• but  cells 
required

Ω

∼ (N̄bins)D

S. Jadach [arXiv:physics/0203033] 
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NN
xi

f(xi)
Ĩ

apply gradient descent 

sam
pling 

f
loss 

g(xi)

MC Integrator: NN based

• Neural Network or BDT


• example of loss: 


• but, sampling requires inverting NN (i.e. computing Jacobian 
determinant of a large matrix) 

g =

DKL = ∫ dx f(x)log ( f
g )

∼ 𝒪(D3)

Bendavid [1707.00028] 
Klimek/Perelstein [1810.11509] 
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i-flow
xi

f(xi)
Ĩ

apply gradient descent 

sam
pling 

f
loss 

g(xi)

i-flow: MC Integrator 
with Normalizing Flows

•  = Coupling Layer based Normalizing Flow 


• improves sampling efficiency 


• supervised learning with an “infinite” data set

g

∼ 𝒪(D)
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Normalizing Flow
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•   ,  is bijective


• If  , then 




• Coupling Layer is a special bijection, expressive but cheap 
in Jacobian computation 

⃗x K = cK(cK−1(⋯c2(c1( ⃗x ))) ci

x ∼ g0(x)

xK ∼ gK = g0

K

∏
k=1

∂ck( ⃗x k−1)
∂ ⃗x k−1

−1

, ⃗x 0 = ⃗x

Normalizing Flow
Rezende/Mohamed [1505.05770] 

Dinh et al. [1410.8516,1605.08803] 
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Coupling Layer

Forward
yA = xA

yB = C(xB; m( ⃗x A))

•  is an easy, invertible Coupling Transform function


•
 , 


• e.g. Affine CT:  

C

gy = ∂y/∂x
−1

gx
∂y
∂x

−1

=
⃗1 0

∂C
∂m

∂m
∂xA

∂C
∂xB

−1

=
∂C(xB; m(xA))

∂xB

−1

C(xB; s, t) = xB ⊙ es + t s, t ∈ ℝ|B| |∂C/∂xB | = e ∑ si

Inverse
xA = yA

xB = C−1(yB; m( ⃗x A))

Dinh et al. [1410.8516,1605.08803] 
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• domain and co-domain are restricted to unit hypercube


• separability:


• if  is uniform, then  acts as the cumulative 
distribution function (CDF) of :


• each CDF can be modeled by a piecewise monotonically 
increasing polynomial

y ∼ gy Ci
xBi

Muller et al. [1808.03856]
Forward

yA = xA

yB = C(xB; m( ⃗x A)) gy = gx
∂C(xB; m(xA))

∂xB

−1

15

C(xB; m(xA)) = (C1(xB1; m), C2(xB2; m), ⋯, C|B|(xB|B|; m))
T

∂Ci(xB; m(xA)) = gx∂xBi

Coupling Transform: 
Piecewise Polynomial
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Example: PW Linear

pdf

cdf

Ci(xBi; Q) = αQib +
b−1

∑
k=1

Qik

α =
xBi − (b − 1)w

w

Given fixed bin width , NN 
predicts pdf bin heights     

w
∼ Qi

bin b

xB1

∂C(xB; Q)
∂xB

= ∏
i

∂Ci(xBi; Q)

∂xBi
= ∏

i

Qib

w

Muller et al. [1808.03856]

xB1

yB1

b = ⌊
xBi

w
⌋



Durkan et al. [1906.04032] 

Coupling Transform: 
Rational Quadratic Spline
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NN predicts widths, heights, and derivatives of each 
knot of the spline.

pdfcdf



• capture all the correlations between every dimension


• transform (or train) each dimension equal number of times


• as few CLs as possible

How many CLs in a flow?

18

 Normalizing Flow:   


  = NN based CL that transforms roughly half of  

⃗x K = cK(cK−1(⋯c2(c1( ⃗x )))
ci ⃗x
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How many CLs in a flow?
• minimum: 4 layers


• maximum: , see example below. 


• One means transform, zero means pass through. The transpose 
of the matrix and its binary negation give the max layers required. 

2⌈log2 D⌉



• Results on 1M sample after training with 5M points


• VEGAS: 100 bins


• FOAM: 1000 points /cell


• i-flow:  coupling layers, piecewise rational quadratic 
spline w. 16 bins in each dimension, DNN w. 5 layers, and 
other hyper-parameters

2⌈log2 D⌉

fgaussian( ⃗x ) = (α π)−ne−∑i (xi− 1
2 )2/α2

fcamel( ⃗x ) =
1
2

(α π)−n(e−∑i (xi− 1
3 )2/α2

+ e−∑i (xi− 2
3 )2/α2)

Toy Example: Integration

20



Toy Example: Integration

(Icode − Itrue)
ΔIcode

:

fgaussian( ⃗x ) = (α π)−ne−∑i (xi− 1
2 )2/α2

fcamel( ⃗x ) =
1
2

(α π)−n(e−∑i (xi− 1
3 )2/α2

+ e−∑i (xi− 2
3 )2/α2)

(α = 0.2)

(α = 0.2)
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BUT, i-flow converges slower than VEGAS or FOAM
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Toy Example: Integration



Toy Example:  
Sampling with i-flow

f3(x1, x2) = xa
2 exp{−w | (x2 − p2)2 + (x1 − p1)2 − r2 |}

+(1 − x2)aexp{−w | (x2 − 1 + p2)2 + (x1 − 1 + p1)2 − r2 |}
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Weights of 1M points sampled,


unweighting efficiency: 
⟨ f /g⟩

max( f /g)
= 19.5 %

23

(p1 = 0.4 , p2 = 0.6 , r = 0.25 , w = 1/0.004 , a = 3)



Toy Example:  
Sampling with i-flow

f4(x1, x2) = 1 0.2 < x2
1 + x2

2 < 0.45

0 else

7500 points sampled:

6720 inside, 780 outside, 

nearly 90% cut efficiency
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Physics Application
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i-flow
xi

f(xi)
Ĩ

apply gradient descent 

sam
pling 

Sherpa
loss 

g(xi)

i-flow + Sherpa:  
Phase Space Integration

• Sherpa computes matrix element squared with color sampling


• recursive multi-channel algorithm maps the integration domain in i-flow (a unit 
hypercube) to physical variables: 


• integrating over final color configurations adds  more variables

ndim = (3nf − 4) + (nf − 1) + nihadrons

2nc − 1

https://sherpa-team.gitlab.io  26

kinematics multi-channel proton pdf
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III: An easy example: e+e� ! 3j .

 g color

 q color

 g color spectator

 cos# of decaying fermion with beam

 ' of decaying fermion with beam

 cos# of decay

 ' of decay

 propagator of decaying fermion

 multichannel

Learned distribution

with learning color

Claudius Krause (Fermilab) Event Generation with Normalizing Flows: i-flow December 10, 2019 26 / 33

III: An easy example: e+e� ! 3j .

 g color

 q color

 g color spectator

 cos# of decaying fermion with beam

 ' of decaying fermion with beam

 cos# of decay

 ' of decay

 propagator of decaying fermion

 multichannel

Target distribution

with learning color

Claudius Krause (Fermilab) Event Generation with Normalizing Flows: i-flow December 10, 2019 25 / 33

Example: e+e− → jjj

σNN = 4887.1 ± 4.6pb
σSherpa = 4887.0 ± 17.7pb
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Example: pp → V+jets



• Discrete variables like multi-channel or color can not 
be modeled well by a continuous distribution.


• After all, it is a MC technique, to get the corners 
right requires some luck or a very large number of 
samples to train, which then runs into memory 
problem.

Why does it not work so well 
for  jets? n ≥ 2
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30

Anomaly Detection w. i-flow 

• Pick an observable  reconstructed from data and define a 
signal region (SR), e.g. invariant mass of di-jets


• Learn two distributions on a set of other kinematic features 
for SR and the side bands (SB) conditioned on : 




• Interpolate  into SR and calculate the likelihood ratio  

 


•  for SM backgrounds but bigger than 1 for BSM events.

𝒪

{xi} 𝒪
PSR(xi |𝒪 ∈ SR), PSB(xi |𝒪 ∉ SR)

PSB

R =
PSR(xi |𝒪 ∈ SR)
PSB(xi |𝒪 ∈ SR)

R ≈ 1

Nachman, Shih. [2001.04990] 



• as a MC Integrator, compared to VEGAS and 
FOAM, i-flow is the only one that performs 
consistently up to high dimensions 


• as a MC event generator, the unweighting efficiency 
exceeds that of traditional methods by a factor of 2 
to 3 in simple processes (V+0,1jet)


• code available at https://gitlab.com/i-flow/i-flow 

(D ≳ 8)

Conclusion
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Back-up: more examples

(Icode − Itrue)
ΔIcode

:
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Back-up: Hyper-parameter 
Optimization for jetW + 1
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