
C. Gao, J. Isaacson, and C. Krause (2020), 2001.05486
C. Gao, S. Hoche, J. Isaacson, C. Krause, and H. Schulz (2020), 2001.10028

BNL Wednesday March 4th 2020

Teaching a Computer to Integrate

1

LHC requires large number
of MC events

budget

2

0 50000 100000 150000 200000 250000 300000
Ntrials

10�9

10�8

10�7

10�6

10�5

10�4

10�3

F
re

qu
en

cy S
h
er

p
a

M
C

@
N

E
R

S
C

W+0j

W+1j

W+2j

W+3j

W+4j

W+5j

W+6j

W+7j

W+8j

W+9j

0 1 2 3 4 5 6 7 8 9
Njet

10�1

100

101

102

103

104

105

106

C
P

U
h
/M

ev
t

Sh
er

pa
/P

yt
hi

a
+

D
IY

@
N

E
R

SC

W ++jets, LHC@14TeV

pT,j > 20GeV, |⌘j| < 6

WTA (> 6j)

parton level

particle level

particle level

Stefan Hoche, Stefan Prestel, Holger Schulz [1905.05120;PRD]

Why MC simulation
so expensive

Matrix
Element

• Matrix element evaluation is more expensive than showering

• Unweighting high-multiplicity events is expensive

Shower

3

Outline

• Review of MC techniques and traditional approaches

• Introduction of i-flow: a MC integrator based on
Normalizing Flow

• Applications of i-flow

4

•

• = volume of domain

• uncertainty:

I = ∫Ω
dDx f (⃗x) ≈

V
N

N

∑
i

f (⃗x) ≡ V⟨ f⟩x

V Ω

ΔI = V
⟨ f2⟩x − ⟨ f⟩2

x

N − 1
=

σN

N − 1

Monte Carlo Integration

5

•

• resembles the shape of (ideally)

• sample uniformly in

• uncertainty:

I = ∫ dDx g (⃗x)
f (⃗x)
g (⃗x)

= V⟨ f/g⟩G

g f g → f/I

dDG = g (⃗x) dDx

ΔI = V
⟨(f/g)2⟩x − ⟨ f/g⟩2

x

N − 1

Importance Sampling

6

• assume integrand factorizes:

• approximate each dimension
with a histogram

• adjust the bin widths such that
areas are equal

• to sample?

f(⃗x) = f1(x1) f2(x2) ⋯ fD(xD)

MC Integrator: VEGAS
Peter Lepage 1980

7

MC Integrator: VEGAS
What if non-factorizable?f (⃗x)

Peter Lepage 1980

8

MC Integrator: FOAM
• use a cellular

approximation with the
first cell covering entire

• build a grid by
subsequent binary splits
of existing cells

• to sample?

• but cells
required

Ω

∼ (N̄bins)D

S. Jadach [arXiv:physics/0203033]

9

NN
xi

f(xi)
Ĩ

apply gradient descent

sam
pling

f
loss

g(xi)

MC Integrator: NN based

• Neural Network or BDT

• example of loss:

• but, sampling requires inverting NN (i.e. computing Jacobian
determinant of a large matrix)

g =

DKL = ∫ dx f(x)log (f
g)

∼ 𝒪(D3)

Bendavid [1707.00028]
Klimek/Perelstein [1810.11509]

10

i-flow
xi

f(xi)
Ĩ

apply gradient descent

sam
pling

f
loss

g(xi)

i-flow: MC Integrator
with Normalizing Flows

• = Coupling Layer based Normalizing Flow

• improves sampling efficiency

• supervised learning with an “infinite” data set

g

∼ 𝒪(D)

11

Normalizing Flow

12

• , is bijective

• If , then

• Coupling Layer is a special bijection, expressive but cheap
in Jacobian computation

⃗x K = cK(cK−1(⋯c2(c1(⃗x))) ci

x ∼ g0(x)

xK ∼ gK = g0

K

∏
k=1

∂ck(⃗x k−1)
∂ ⃗x k−1

−1

, ⃗x 0 = ⃗x

Normalizing Flow
Rezende/Mohamed [1505.05770]

Dinh et al. [1410.8516,1605.08803]

13

Coupling Layer

Forward
yA = xA

yB = C(xB; m(⃗x A))

• is an easy, invertible Coupling Transform function

•
 ,

• e.g. Affine CT:

C

gy = ∂y/∂x
−1

gx
∂y
∂x

−1

=
⃗1 0

∂C
∂m

∂m
∂xA

∂C
∂xB

−1

=
∂C(xB; m(xA))

∂xB

−1

C(xB; s, t) = xB ⊙ es + t s, t ∈ ℝ|B| |∂C/∂xB | = e ∑ si

Inverse
xA = yA

xB = C−1(yB; m(⃗x A))

Dinh et al. [1410.8516,1605.08803]

14

• domain and co-domain are restricted to unit hypercube

• separability:

• if is uniform, then acts as the cumulative
distribution function (CDF) of :

• each CDF can be modeled by a piecewise monotonically
increasing polynomial

y ∼ gy Ci
xBi

Muller et al. [1808.03856]
Forward

yA = xA

yB = C(xB; m(⃗x A)) gy = gx
∂C(xB; m(xA))

∂xB

−1

15

C(xB; m(xA)) = (C1(xB1; m), C2(xB2; m), ⋯, C|B|(xB|B|; m))
T

∂Ci(xB; m(xA)) = gx∂xBi

Coupling Transform:
Piecewise Polynomial

16

Example: PW Linear

pdf

cdf

Ci(xBi; Q) = αQib +
b−1

∑
k=1

Qik

α =
xBi − (b − 1)w

w

Given fixed bin width , NN
predicts pdf bin heights

w
∼ Qi

bin b

xB1

∂C(xB; Q)
∂xB

= ∏
i

∂Ci(xBi; Q)

∂xBi
= ∏

i

Qib

w

Muller et al. [1808.03856]

xB1

yB1

b = ⌊
xBi

w
⌋

Durkan et al. [1906.04032]

Coupling Transform:
Rational Quadratic Spline

17

NN predicts widths, heights, and derivatives of each
knot of the spline.

pdfcdf

• capture all the correlations between every dimension

• transform (or train) each dimension equal number of times

• as few CLs as possible

How many CLs in a flow?

18

 Normalizing Flow:

 = NN based CL that transforms roughly half of

⃗x K = cK(cK−1(⋯c2(c1(⃗x)))
ci ⃗x

19

How many CLs in a flow?
• minimum: 4 layers

• maximum: , see example below.

• One means transform, zero means pass through. The transpose
of the matrix and its binary negation give the max layers required.

2⌈log2 D⌉

• Results on 1M sample after training with 5M points

• VEGAS: 100 bins

• FOAM: 1000 points /cell

• i-flow: coupling layers, piecewise rational quadratic
spline w. 16 bins in each dimension, DNN w. 5 layers, and
other hyper-parameters

2⌈log2 D⌉

fgaussian(⃗x) = (α π)−ne−∑i (xi− 1
2)2/α2

fcamel(⃗x) =
1
2

(α π)−n(e−∑i (xi− 1
3)2/α2

+ e−∑i (xi− 2
3)2/α2)

Toy Example: Integration

20

Toy Example: Integration

(Icode − Itrue)
ΔIcode

:

fgaussian(⃗x) = (α π)−ne−∑i (xi− 1
2)2/α2

fcamel(⃗x) =
1
2

(α π)−n(e−∑i (xi− 1
3)2/α2

+ e−∑i (xi− 2
3)2/α2)

(α = 0.2)

(α = 0.2)

21

BUT, i-flow converges slower than VEGAS or FOAM

22

Toy Example: Integration

Toy Example:
Sampling with i-flow

f3(x1, x2) = xa
2 exp{−w | (x2 − p2)2 + (x1 − p1)2 − r2 |}

+(1 − x2)aexp{−w | (x2 − 1 + p2)2 + (x1 − 1 + p1)2 − r2 |}

��������� �������
������
�������� �� �� � ���

��-�� ��-�� ��-�� ��-�� ��-�� �

�

��

���

����

���

�/�

Weights of 1M points sampled,

unweighting efficiency:
⟨ f /g⟩

max(f /g)
= 19.5 %

23

(p1 = 0.4 , p2 = 0.6 , r = 0.25 , w = 1/0.004 , a = 3)

Toy Example:
Sampling with i-flow

f4(x1, x2) = 1 0.2 < x2
1 + x2

2 < 0.45

0 else

7500 points sampled:

6720 inside, 780 outside,

nearly 90% cut efficiency

24

Physics Application

25

i-flow
xi

f(xi)
Ĩ

apply gradient descent

sam
pling

Sherpa
loss

g(xi)

i-flow + Sherpa:
Phase Space Integration

• Sherpa computes matrix element squared with color sampling

• recursive multi-channel algorithm maps the integration domain in i-flow (a unit
hypercube) to physical variables:

• integrating over final color configurations adds more variables

ndim = (3nf − 4) + (nf − 1) + nihadrons

2nc − 1

https://sherpa-team.gitlab.io 26

kinematics multi-channel proton pdf

27

III: An easy example: e+e� ! 3j .

 g color

 q color

 g color spectator

 cos# of decaying fermion with beam

 ' of decaying fermion with beam

 cos# of decay

 ' of decay

 propagator of decaying fermion

 multichannel

Learned distribution

with learning color

Claudius Krause (Fermilab) Event Generation with Normalizing Flows: i-flow December 10, 2019 26 / 33

III: An easy example: e+e� ! 3j .

 g color

 q color

 g color spectator

 cos# of decaying fermion with beam

 ' of decaying fermion with beam

 cos# of decay

 ' of decay

 propagator of decaying fermion

 multichannel

Target distribution

with learning color

Claudius Krause (Fermilab) Event Generation with Normalizing Flows: i-flow December 10, 2019 25 / 33

Example: e+e− → jjj

σNN = 4887.1 ± 4.6pb
σSherpa = 4887.0 ± 17.7pb

28

Example: pp → V+jets

• Discrete variables like multi-channel or color can not
be modeled well by a continuous distribution.

• After all, it is a MC technique, to get the corners
right requires some luck or a very large number of
samples to train, which then runs into memory
problem.

Why does it not work so well
for jets? n ≥ 2

29

30

Anomaly Detection w. i-flow

• Pick an observable reconstructed from data and define a
signal region (SR), e.g. invariant mass of di-jets

• Learn two distributions on a set of other kinematic features
for SR and the side bands (SB) conditioned on :

• Interpolate into SR and calculate the likelihood ratio

• for SM backgrounds but bigger than 1 for BSM events.

𝒪

{xi} 𝒪
PSR(xi |𝒪 ∈ SR), PSB(xi |𝒪 ∉ SR)

PSB

R =
PSR(xi |𝒪 ∈ SR)
PSB(xi |𝒪 ∈ SR)

R ≈ 1

Nachman, Shih. [2001.04990]

• as a MC Integrator, compared to VEGAS and
FOAM, i-flow is the only one that performs
consistently up to high dimensions

• as a MC event generator, the unweighting efficiency
exceeds that of traditional methods by a factor of 2
to 3 in simple processes (V+0,1jet)

• code available at https://gitlab.com/i-flow/i-flow

(D ≳ 8)

Conclusion

31

Back-up: more examples

(Icode − Itrue)
ΔIcode

:

32

Back-up: Hyper-parameter
Optimization for jetW + 1

33

