Yellow Report – Detector Working Group

<u>Conveners:</u> Ken Barish (UC Riverside), Tanja Horn (CUA), Peter Jones (U. Birmingham), Silvia Dalla Torre (Trieste/INFN)

Ex officio: Markus Diefenthaler (JLab)

- ☐ Path Towards Integrated Detector Simulations
- Detector Matrix Review and Moving the Needle Forward

Path towards Integrated Detector Simulations

Cartoon/Model of the Extended Detector and IR

For this discussion focus on the example of the Central Detector

Status of simulations for Tracking, Particle ID, and Calorimetry

Tracking simulation activity summary

Overview:

- working on the main deliverables:
 - ✓ evaluate all-silicon vs hybrid (silicon & gaseous) trackers
 - ✓ compare realistic alternatives (TPC, MPGD options) for gaseous detectors, barrel and forward
- baseline performance studies (mainly EicRoot-based) available at Pavia:
 - ✓ central region Si-vertex + TPC + Fast MPGD Layers
 - ✓ endcap region GEM (MPGD) trackers
 - ✓ all-silicon (barrel) tracker + forward/backward silicon disks
 - √ comparisons all-silicon vs BeAST (Si-vertex + TPC + MPGDs) concepts
- recent (increasing) effort within Fun4All simulation framework:
 - √ implementation of all-silicon tracker
 - ✓ moving all-silicon layout studies from EicRoot to Fun4All
 - ✓ replacing TPC with MPGD layers
 - √ first implementation of Forward Silicon Tracker (FST)
- main available results:
 - ✓ momentum/angular and pointing resolutions in different configurations/options

Tracking simulation activity summary

New since Pavia

Further details on the recent effort within Fun4All:

- √ implementation of all-silicon tracker:
 - detailed geometry study (eg material scan to understand features of X/X0 plot)
 - comparison of uniform to realistic B-field (performance compared with BeAST and sPHENIX maps)
 - first studies of jet reconstruction performance (ongoing)
- ✓ moving all-silicon layout studies from EicRoot to Fun4All:
 - managed to export geometries from EicRoot to Fun4All (via GDML)
 - all-silicon layout studies compared: no significant difference between the two frameworks
 - simulation of physics events to be propagated/reconstructed through different layouts (ongoing)
 - plan to check performance on benchmark signals (eg D0 invariant mass reconstruction)
- ✓ replacing TPC with MPGD layers:
 - improved tracker geometry with more realistic material (carbon fiber supports, PCB r/o boards etc)
 - new material budget scan performed (still within requirements)
 - performance (momentum/angular resolutions) re-checked, no significant degradation
 - preliminary simulation of uTPC mode (to be refined)
- √ first implementation of Forward Silicon Tracker (FST):
 - 6 FST planes (including 2 time-stamping planes) integrated with 3-layer Si barrel in the Babar magnet
 - preliminary performance at different pseudorapidity vs pixel cell size and sensor thickness
 - geometry and detector configuration to be optimized (ongoing)

Particle ID simulation activity summary

27	Nomenclature	Elec	trons	$\pi/1$	Tochnology	
η	Nomenciature	Resolution	PID	p-Range	Separation	Technology
-3.5> -1.0	Backward Detector	2-7% / √ E	rejection 10^4	≤7 GeV/c	> 3-sigma	HBD mRICH TRD LAPPD
-1.0> 1.0	Central Detector	10-12% / √ E	rejection 10^4	≤ 5 GeV/c	> 3-sigma	DIRC dE/dx LGAD
1.0> 2.0	Forward Detector-1	10-12% / √ E		≤8 GeV/c	> 3-sigma	dRICH mRICH LAPPD
2.0> 3.0	Forward Detector-1	10-12% / √ E		≤ 20 GeV/c	; > 3-sigma	dRICH Gas RICH TRD
3.0> 3.5	Forward Detector-1	10-12% / √ E		≤ 45 GeV/c	: > 3-sigma	dRICH Gas RICH TRD

Particle ID simulation activity summary

Calorimetry simulation activity summary

Calorimetry for EIC

	outstanding for Ele											
		ECAL						BCAL				
η	total depth, cm	Energy resolution σΕ/Ε, %	Spacial resolution σX, mm	Granularity, mm ²	Min. photon energy, MeV	PID e/π, π suppression	Technology examples*	total depth, cm	Energy resolution σΕ/Ε, %	Spacial resolution σX, mm	Granularity, mm ²	Technology examples
-3.5:-2.0	38	2.2/√E⊕1.0	3/√E⊕1	20×20	20	100	PbWO ₄ crystals	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc
-2.0:-1.0	38 50 50	8.0/√E⊕1.5 7.0/√E⊕1.5 5.0/√E⊕1.5	3/√E⊕1 6/√E⊕1 6/√E⊕1	25×25 40×40 40×40	50 50 30	100	W/Sc Shashlyk Pb/Sc Shashlyk DSB:Ce glass	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc
-1.0:1.0	30	12/√E⊕2 14/√E⊕3	3/√E⊕1	25×25	100	100	W/Sc Shashlyk W powder/ScFi	110	100/√E⊕10	50/√E⊕30	100×100	Fe/Sc
1.0:3.5	38 38 50 50	12/√E⊕2 14/√E⊕3 10.0/√E⊕1.5 5.0/√E⊕1.5	3/√E⊕1 3/√E⊕1 6/√E⊕1 6/√E⊕1	25×25 25×25 40×40 40×40	100 100 100 30	100	W/Sc Shashlyk W powder/ScFi Pb/Sc Shashlyk DSB:Ce glass	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc

^{*} Additional technologies are under consideration

Calorimetry simulation activity summary

Calorimeter	Region	Simulation type	Status
PbWO ₄	Backward	Escalade + GEMC	Active
glass TF1	Backward		
DSB:Ce scintillating glass	Backward	Escalade + GEMC	Active
Fe/Sc HCAL	Backward	Geant4	Active
Shashlik	Backward	Geant4 standalone Fun4All	Active
W/SciFi	Barrel	Fun4All	Active
Scintillating glass	Barrel	Escalade	Active
Fe/Sc HCAL	Barrel	Geant4 standalone	Active
W/SciFi	Forward	Fun4All	Active
Shashlik	Forward	Geant4 Standalone Fun4All	Active
DSB:Ce Scintillating glass	Forward	Escalade+GEMC	Active
Glass TF1	Forward		
Fe/Sc HCAL	Forward	Geant4 Standalone	Active

Path towards Integrated Simulations

- ☐ Simulations including Geant4 available for all regions of the central detector
 - Simulations also available for forward/backward detectors
- Next step towards integrated simulations is to merge the individual detector simulations into one of the existing tools
 - Make your simulation code available on the GitHub organization of the EIC: https://github.com/eic
 - Instructions on how to integrate standalone simulations into the existing EIC framework can be found on the SWG GitHub: https://eic.github.io/
 - Additional information on the existing tools:

ESCalate: https://www.youtube.com/watch?v=-wAl9kWoLCs

Fun4All: https://www.youtube.com/watch?v=fONXYf7lsP0

EicToyModel: https://github.com/eic/EicToyModel