Exploring confinement in SU(N) gauge theories with double-trace Polyakov loop deformations

Peter Meisinger and Michael Ogilvie Washington University in St. Louis

Lattice 2014 New York

In Memoriam

Pierre van Baal 1955-2013

Gerry Guralnik 1936-2014

Resurgence and QCD

- The behavior of observables are described by a trans-series
- Sum includes contributions which are not topologically stable, such as an instanton-anti-instanton contribution.
- Applies even in theories without topologically stable objects.
- Deep connection between perturbative and non-perturbative sector.

$$\langle O \rangle = \sum_{n=0}^{\infty} p_{0,n} \lambda^n + \sum_c e^{-S_c/\lambda} \sum_{n=0}^{\infty} p_{c,n} \lambda^n$$

- QCD: Argyres and Unsal, 2012.
- CP^{N-1}: Dunne and Unsal, 2012.
- Quantum Mechanics, Dunne and Unsal, 2013.
- Principal Chiral Model: Cherman *et al.*, 2013, 2014.
- Self-dual model: Basar et al., 2013.

O(3) model in d=2: the XY limit

- Asymptotically free (like QCD)
- instantons (like QCD):

$$\pi_2(S^2) = Z$$
 $w = \frac{\sigma_1 + i\sigma_2}{1 - \sigma_3} = c\frac{z - z_1}{z - z_2}$

- XY model vortices emerge as constituents of instantons (like monopoles in QCD)
- Can deform O(3) model into an XY model with h negative G² and mco, 1981; Affleck, 1986.

$$S \to S - \int d^2x \, \frac{1}{2} h \sigma_3^2$$

 Vortices responsible for KT critical behavior and for mass gap

$$S = \int d^2x \frac{1}{2g^2} \left(\nabla \vec{\sigma}\right)^2$$

$$\vec{\sigma}^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 = 1$$

O(3) model in d=2: the Z(2) limit

- h positive changes the boundary conditions to $\sigma_3=\pm 1$ at infinity.
- h breaks the classical scale invariance of the O(3) model and determines instanton size.
- The interpretation of an instanton as a vortex-antivortex pair is lost.
- instantons look like flipped spin in Isingmodel low-T expansion.

$$S \to S - \int d^2x \, \frac{1}{2} h \sigma_3^2$$

mco and Guralnik, 1981

$$S = \int d^2x \frac{1}{2g^2} \left(\nabla \vec{\sigma}\right)^2$$

$$\vec{\sigma}^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 = 1$$

Phase diagram of deformed O(3) model

- Adiabatic continuity: the unbroken, high-T phase of the Ising model is continuously connected to the high-T phase of the XY model via deformation of O(3).
- σ_3^2 tells us where we are in the phase diagram.
- O(N) models with N>3 do not have stable instantons, but have XY and Ising deformations!
- Smallest charge vortices suppressed at θ=π, and highercharge excitations must be included (Affleck, 1986, 1991).

O(3) phase diagram $S \to S - \int d^2x \frac{1}{2}h\sigma_3^2$ ∞ Ising limit Z(2) broken h O(3) model 0 O(3)-like XY massless XY limit $-\infty$ $1/g^{2}$

High-T confinement on R³ x S¹: restoring Z(N)

- Coupling gets weak as T gets large $g^2(T) \rightarrow 0$
- Modify action to restore Z(N) symmetry and force the theory to be Abelian at large distances
 - double trace deformation (Meyers and mco, 2008)

$$S \to S - \int d^3x \, H_A \, |Tr_F P|^2$$

- adjoint fermions (Unsal, 2008)
- A₄ behaves as a 3d scalar with a center-symmetric expectation value; Euclidean monopoles solutions!

High-T confinement on R³ x S¹: topology

- Euclidean monopoles are constituents of instantons (Lee & Yi, 1997, Kraan & van Baal 1998) and confine (Unsal 2008; Unsal and Yaffe, 2008).
- Dimensional reduction yields confinement as in 3d Georgi-Glashow model (Polyakov 1976) by monopole gas
- Monopole gas is represented by a sine-Gordon model for SU(2):

$$S_{eff} = \int d^3x \left[\frac{g^2(T)T}{32\pi^2} \left(\partial_j \sigma \right)^2 - 4y \cos(\sigma) \right]$$
$$y \propto T^3 \left(\Lambda/T \right)^{11/3}$$

• Program works on lattice as well mco, 2012 and in press.

High-T confinement on R³ x S¹: phase diagram

- Positive H_A promotes Z(2) breaking and decreases the deconfinement temperature
- Negative H_A increases the deconfinement temperature
- Deconfinement transition changes from 2nd-order to 1st at tricritical point (location and existence are non-universal-H. Nishimura & mco, 2012
- Reach region of high-T semiclassical confinement

 $T \gg \Lambda$

SU(2) phase diagram $S \rightarrow S - \int d^3x H_A |Tr_F P|^2$

More about the phase diagram

• Tr_AP determines where we are in phase diagram.

SU(2) phase diagram
$$S \to S - \int d^3 x H_A |Tr_F P|^2$$

- Ising limit: Tr_AP=2
- pure gauge: Tr_AP~0
- U(1) limit: Tr_AP=-1
- The SU(2) phase diagram has the form of a Blume-Emery-Griffiths model; the tricritical point has non-Ising critical indices.

String tensions

• In semiclassical region of SU(N), inclusion of only the lightest monopole states gives a generalized sine-Gordon model based on the affine roots of SU(N) Unsal and Yaffe, 2008. $S_{mag} = \int d^3x \left[\frac{T}{2} \left(\partial \rho \right)^2 - 2\xi \sum_{i=1}^N \cos\left(\frac{2\pi}{q} \alpha_j \cdot \rho \right) \right]$

This in turn leads to unsatisfying results for string tension Meisinger and mco
2010. (a)
$$\xi = 8 \left[g^2 T \xi \right]^{1/2}$$

$$\sigma_k^{(s)} \le \frac{8}{\pi} \left[\frac{g^2 T \xi}{N} k \left(N - k \right) \right]^1$$

 Inclusion of all roots with equal with equal ξ is known to lead to string tension Casimir scaling Giovannangeli and C.P. Korthals Altes, 2001.

$$\sigma_{k} = \sigma_{1} \frac{k \left(N - k \right)}{N - 1}$$

Lattice $U(1)^N$ models

• Start from a Villain U(1)^N system:

$$S_{1} = \frac{1}{2g^{2}} \sum_{a=1}^{N} \sum_{p} Tr \left(\partial_{\mu}\phi_{\nu}^{a} - \partial_{\nu}\phi_{\mu}^{a} - 2\pi n_{\mu\nu}^{a}\right)^{2}$$

• Define a set of monopole currents:

$$m^{a}_{\mu}\left(X\right) = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \partial_{\nu} n^{a}_{\rho\sigma}\left(x\right)$$

• The remaining degrees of freedom can be integrated out, giving a Coulomb gas representation:

$$S_{dual} = \frac{2\pi^2}{g^2} \sum_{R,R'} m^a_\mu(R) G(R - R') m^a_\mu(R')$$

Lattice U(1)^{N-1} models

• We can restrict $U(1)^{N}$ to $U(1)^{N-1}$ using a periodic delta function:

$$S_2 = -i\sum_{x,\mu} p_\mu(x) \left[\sum_a \phi^a_\mu(x)\right]$$

• This gives rise to an electric interaction in the Coulomb gas representation:

$$S_{dual} = \frac{2\pi^2}{g^2} \sum_{R,R'} m^a_\mu(R) G(R - R') m^a_\mu(R') + \frac{g^2}{2} \sum_{r,r'} p^a_\mu(r) G(r - r') p^a_\mu(r') - i \sum_{r,R} \left(\sum_a m^a_\mu(R) \right) \Theta_{\mu\nu}(R - r)$$

- Similarly, we can add a potential term that favors or disfavors the Z(N) center subgroup of SU(N).
- On R³ × S¹, the dominant terms will be short monopole world lines with m₄^a=+1 and m₄^b=-1 for some a≠b. This leads naturally to Casimir scaling when center symmetry is unbroken.

Conclusions

- Double trace deformations allow us to interpolate between the U(1)^{N-1} instanton gas picture of confinement and a Z(N) gauge theory, with the pure gauge theory in the middle.
- Tr_AP indicates where we are in the phase diagram, with the system behaving as a generalization of the BEG model.
- Calorons change their role in moving between regions, but are important throughout.
- Casimir scaling is associated with the inclusion of monopoles on a democratic basis, and appears naturally in a U(1)^{N-1} lattice model.