Testing volume independence of large N gauge theories on the lattice

A. González-Arroyo* and Masanori Okawa

Lattice 2014

* Instituto de Física Teórica UAM/CSIC Departamento de Física Teórica, UAM

June 24, 2014

1

1

Large N and the lattice

- Two powerful non-perturbative methods which can be used in combination.
- The concept of **volume independence** or **reduction** emerged from this confluence
- large N SU(N) gauge theories are interesting in their own right.

In this work we restrict ourselves to pure gauge on a symmetric box L^4 and Wilson action

$$S_W = -bN\sum_P \operatorname{Tr}(U(P))$$

where $b = \beta/(2N^2) = 1/\lambda_L$ We also restrict the observables *O* to small Wilson loops W(R, T) (simple and precise).

A lattice expectation value: O(b, N, L)The large N quantity is given by

$$O_{\infty}(b) = \lim_{N \longrightarrow \infty} \lim_{L \longrightarrow \infty} O(b, N, L)$$
$$\longleftarrow O(b, N) \longrightarrow$$

A lattice expectation value: O(b, N, L)The large N quantity is given by

$$O_{\infty}(b) = \lim_{N \longrightarrow \infty} \lim_{L \longrightarrow \infty} O(b, N, L)$$
$$\longleftarrow O(b, N) \longrightarrow$$

A lattice expectation value: O(b, N, L)The large N quantity is given by

$$O_{\infty}(b) = \lim_{N \longrightarrow \infty} \lim_{L \longrightarrow \infty} O(b, N, L)$$
$$\longleftarrow O(b, N) \longrightarrow$$

• Do the limits commute?

A lattice expectation value: O(b, N, L)The large N quantity is given by

$$O_{\infty}(b) = \lim_{N \longrightarrow \infty} \lim_{L \longrightarrow \infty} O(b, N, L)$$

 $\leftarrow O(b, N) \longrightarrow$

- Do the limits commute?
- Are there phase transition points on the x or y axis?

A lattice expectation value: O(b, N, L)The large N quantity is given by

$$O_{\infty}(b) = \lim_{N \longrightarrow \infty} \lim_{L \longrightarrow \infty} O(b, N, L)$$

 $\leftarrow O(b, N) \longrightarrow$

• Do the limits commute?

 Are there phase transition points on the x or y axis?

VOLUME INDEPENDENCE

 $\lim_{N \to \infty} O(b, N, L) = O_{\infty}(b)$

Important ingredients/results

• The statement can be *b*-dependent

True at strong coupling, wrong at weak coupling (BHN)?

• The statement can depend on the boundary conditions Twisted Boundary conditions (GAO), discrete Z_N fluxes through each plane $n_{\mu\nu}$:

$$S_W = -bN\sum_P Z(P)\mathrm{Tr}(U(P))$$

All that matters is $Z(\text{Plane}) = \exp\{2\pi i \ n(\text{Plane})/N\}$

- There might be phase transitions at fixed $L_c(b)$ Partial reduction (NN)
- Might depend on the lattice action (UY)-...

Weak coupling results (large b)

The theory can be studied by standard weak-coupling/perturbative methods.

$$O(b, \mathsf{N}, \mathsf{L}) = \hat{O}_0 - \sum_{j=1} \hat{O}_j(\mathsf{N}, \mathsf{L}) rac{1}{b^j}$$

• Leading order dominated by flat connections: $\hat{\mathcal{O}}_0 = \hat{\mathcal{W}}_0 = 1$

For periodic B.C. :**TORONS**

For T.B.C: orthogonal twists + isotropy $\Rightarrow N = \hat{L}^2$ and $n(\text{Plane}) = k\hat{L}$ SYMMETRIC TWIST k coprime with \hat{L}

• $\hat{W}_{1}^{\text{PBC}}(N,L) = \hat{W}_{1}(N,\infty) - \frac{R^{2}T^{2}}{24L^{4}}(1-\frac{1}{N^{2}}) + \dots$ $\hat{W}_{1}^{\text{TBC}}(N,L) = \hat{W}_{1}^{\text{PBC}}(\infty,LL) - \frac{1}{N^{2}}\hat{W}_{1}^{\text{PBC}}(\infty,L) \sim$ $\hat{W}_{1}(N,\infty) + O(\frac{1}{L^{6}N^{2}})$

• General arguments suggest this is true to all orders (GAO) (now estimating size of $\hat{W}_2^{\text{TBC}}(N, L, k)$ with M. Garcia Perez)

Results in Non-perturbative weak-coupling region

Can we recover volume independence by simply setting $k \neq 0$? Results by several authors (IO-TV) show one cannot keep k fixed

A surviving candidate (GAO 2010):

$$\lim_{k \to \infty} O(b, N = \hat{L}^2, L, k_{\hat{L}}) = O_{\infty}(b)$$

THIS WORK

Make a **DIRECT** test of the proposal by a **QUANTITATIVELY PRECISE** measurement of W(R, T; b, N, L, k)Our study includes ordinary LGT with PBC (k = 0), the EK model ($L = 1 \ k \neq 0$)

Volume independence \Leftrightarrow $W(R, T; b, \infty, L, k) = W_{N=\infty}(R, T; b)$

We studied the plaquette (R = T = 1) at b = 0.36 at various L and N. This is a very precise quantity (errors 10^{-5}).

We studied the plaquette (R = T = 1) at b = 0.36 at various L and N. This is a very precise quantity (errors 10^{-5}). And twisted boundary conditions $k \neq 0$ (TEK L = 1)

N-dependence of TEK

We tried various values of $N = \hat{L}^2$

A. González-Arroyo* and Masanori Okawa Lattice 2014 Testing volume independence of large N gauge theories on the

N-dependence of TEK

We tried various values of $N = \hat{L}^2$

N-dependence of TEK

We tried various values of $N = \hat{L}^2$

Other values of b and R

The result extends to other values of *b*: Example b = 0.37: The $1/N^2$ is approximately universal

A. González-Arroyo* and Masanori Okawa Lattice 2014 Testing volume independence of large N gauge theories on the

This work

Other values of b and R

The same is true about other Wilson loops R = 2, 3, 4

A. González-Arroyo^{*} and Masanori Okawa Lattice 2014 Testing volume independence of large N gauge theories on the

Global description for all N

All the data points obtained over the last 3 years can be fitted to a unified picture:

$$\bar{E}(b,N) = \frac{1 + \sum_{n=1}^{3} \sum_{m=0}^{\min(2,n)} a_{nm} x^n y^m}{1 + \sum_{n=1}^{3} \sum_{m=0}^{\min(2,n)} a'_{nm} x^n y^m}$$

with $x = 1/b_I = 1/(bE(b))$ and $y = 1/N^2$.

 a'_{nm} adjusted to match perturbative expansion to 3 loops

Global description for all N

All the data points obtained over the last 3 years can be fitted to a unified picture:

$$\bar{E}(b,N) = \frac{1 + \sum_{n=1}^{3} \sum_{m=0}^{\min(2,n)} a_{nm} x^n y^m}{1 + \sum_{n=1}^{3} \sum_{m=0}^{\min(2,n)} a'_{nm} x^n y^m}$$

with $x = 1/b_l = 1/(bE(b))$ and $y = 1/N^2$.

 a'_{nm} adjusted to match perturbative expansion to 3 loops

- The formula is invertible
- matches the data within $\mathcal{O}(10^{-5})$ errors
- The N = ∞ parameters are determined with TEK only
- Similar results can be obtained for W(R, R)

A. González-Arroyo^{*} and Masanori Okawa Lattice 2014

Testing volume independence of large N gauge theories on the

A final view

0.39

Conclusions and outlook

Volume independence holds up to a very high level of precision if the appropriate boundary conditions are used. The data is consistent with VI^2 being valid at all values of *b*. Finite *N* corrections are small and allow the reduced version to be a practical tool to access the large *N* world.

- Complete the study in perturbation theory (with M. Garcia Perez)
- Extend the study to other observables and asymmetric boxes (finite temperature?)

Large N WORKSHOP at IFT(Madrid) 18 May- June 5 2015

²VI stands for Volume Independence not the middle name of Felipe VI