A study of the anomalous magnetic moment of the muon computed from the Adler function

Hanno Horch

Institute for Nuclear Physics, University of Mainz

In collaboration with M. Della Morte, A. Francis, G. Herdoiza, B. Jäger, A. Jüttner, H. Meyer, H. Wittig

The Adler function

- 2 Results for the Adler function
- 3 Combined fits to the Adler function
- 4 Alternative method to determine a_{μ}
- 5 Summary and Outlook

Adler function

The Adler function is defined as¹

$$\frac{D(q^2)}{q^2} = \frac{3\pi}{\alpha} \frac{d}{dq^2} \Delta \alpha_{had}(q^2),$$

and it can be measured in $e^+e^- \rightarrow hadrons$. The Adler function is related to the vacuum polarization by

$$D(q^2) = 12\pi^2 q^2 \frac{d\Pi(q^2)}{d(q^2)},$$

and if we use $D(q^2)$ to determine $\hat{\Pi}(q^2) = \Pi(q^2) - \Pi(0)$ we avoid the extrapolation to $\Pi(q^2 = 0)$. Steps of the analysis:

- $\ \, {\rm 0} \ \, {\rm determine} \ \, \Pi(q^2) \ \, {\rm on} \ \, {\rm the} \ \, {\rm lattice} \ \ \,$
- 2 take the numerical derivative of $\Pi(q^2)\,\rightarrow\,D(q^2)$
- ${igsin}$ in order to describe the q^2 -dependence apply a fit to $D(q^2)$
- determine a_{μ}^{HLO} from this fit
- ¹Adler, Phys. Rev. **D** 10, 3714, 1974

CLS-Ensembles

In our study we use O(a)-improved Wilson-fermions with $N_f = 2$ with partially twisted boundary conditions. The strange and charm quarks are partially quenched.

Label	V	β	$a[fm]^*$	$m_{\pi}[MeV]$	$m_{\pi}L$	N_{cnfg}	N_{meas}
A3	64×32^3	5.20	0.079	473	6.0	251	1004
A4	64×32^3	5.20	0.079	363	4.7	400	1600
A5	64×32^3	5.20	0.079	312	4.0	251	1004
B6	96×48^3	5.20	0.079	267	5.1	306	1224
E5	64×32^3	5.30	0.063	456	4.7	1000	4000
F6	96×48^3	5.30	0.063	325	5.0	300	1200
F7	$96 imes 48^3$	5.30	0.063	277	4.2	250	1000
G8	128×64^3	5.30	0.063	193	4.0	205	820
N5	96×48^3	5.50	0.050	430	5.2	347	1392
N6	96×48^3	5.50	0.050	340	4.1	559	2236
07	128×64^3	5.50	0.050	261	4.4	138	552

* [arXiv:1110.6365]

Step 1: Determination of $\Pi(q^2)$

The vacuum polarization tensor can be computed by

$$\Pi_{\mu\nu}(q^2) = \int d^4x e^{iqx} \left\langle J_{\mu}(x) J_{\nu}(0) \right\rangle.$$

From Euclidean invariance and current conservation one finds

$$\Pi_{\mu\nu}(q^2) = \left(g_{\mu\nu}q^2 - q_{\mu}q_{\nu}\right)\Pi(q^2).$$

Fit to $\Pi(q^2)$

Fit an ansatz to $\Pi(q^2)$, and compute the derivative of the fit function. We use the Padé ansatz

$$\Pi_{fit}(q^2) = \Pi(0) - q^2 \left(\frac{a_1}{q^2 + b_1} + \frac{a_2}{q^2 + b_2}\right),$$
$$\frac{d}{dq^2} \Pi_{fit}(q^2) = -\frac{a_1 b_1}{(b_1 + q^2)^2} - \frac{a_2 b_2}{(b_2 + q^2)^2}.$$

[arXiv:1112.2894, arXiv:1205.3695]

a

Numerical derivative of $\Pi(q^2)$

We use linear fits with varying ranges to approximate the derivative of $\Pi(q^2)$.

Step 2: Procedures for the numerical derivative 1

Procedure |

• at each q^2 perform a linear fit

$$\Pi_{fit}^{[l]}(q^2) = a_l + b_l q^2,$$

- \bullet repeat these fits for several fit ranges $\epsilon \in [0.1, 1.0] {\rm GeV}^2$,
- search for a region in ϵ where variations in b_l are small.

Step 2: Procedures for the numerical derivative 2

Procedure II

 ${\, \bullet \,}$ at each q^2 we fit the two functions

$$\Pi_{fit}^{[l]}(q^2) = a_l + b_l \ln(q^2),$$

$$\Pi_{fit}^{[q]}(q^2) = a_q + b_q \ln(q^2) + c_q \left(\ln(q^2)\right)^2,$$

- \bullet repeat these fits for several fit ranges $\epsilon \in [0.1, 1.0] {\rm GeV}^2$,
- apply cuts to the fits, such as removing fits with a large curvature c_q ,
- from the fits that survive pick the result, where the coefficients b_l and b_q are similar.

2 Results for the Adler function

3 Combined fits to the Adler function

4 Alternative method to determine a_{μ}

5 Summary and Outlook

Results for the Adler function on F7: Procedure |

Results for the Adler function on F7: Procedure II

Comparison of the different methods on F7

Comparison of the different methods on F7

Comparison with the mixed representation method

For the mixed representation method see [arXiv:1306.2532], and the talk by Anthony Francis.

2 Results for the Adler function

Combined fits to the Adler function

4 Alternative method to determine a_{μ}

5 Summary and Outlook

Step 3: Combined fits

To determine the Adler function at the physical point and in the continuum we apply combined fits of the type:

$$D(q^2) = A(q^2)(1 + B(a,q) + C(m_{\pi},q^2))$$

• The momentum dependence is described by the derivative of Padé-approximants

$$A_{[12]}(q^2) = q^2 \left(\frac{a_1 b_1}{(b_1 + q^2)^2} + \frac{a_2 b_2}{(b_2 + q^2)^2} \right),$$

$$A_{[22]}(q^2) = q^2 \left(\frac{a_1 b_1}{(b_1 + q^2)^2} + \frac{a_2 b_2}{(b_2 + q^2)^2} + a_0 \right).$$

• The lattice spacing dependence is given by

$$B_1(a,q) = c_1(aq) + c_2(4\pi f_{\rm K}a), \quad B_2(a,q) = c_1(aq)^2 + c_2(4\pi f_{\rm K}a)^2.$$

• The light quark mass dependence is

$$C(m_{\pi}, q^2) = d_1 \frac{m_{\pi}^2 - (m_{\pi}^{exp})^2}{d_2 + q^2}$$

Results for $m_{\pi} \approx 270$ MeV for P[2,2], $O(a^2)$, $N_f = 2$

Results for $\beta = 5.30$, a = 0.063 fm, $N_f = 2$

Results for $\beta = 5.30$, a = 0.063 fm for P[2,2], $\overline{O(a^2)}$, $N_f = 2$

Hanno Horch Lattice 2014 June 27th 2014

2 Results for the Adler function

3 Combined fits to the Adler function

5 Summary and Outlook

Step 4: Determination of a_{μ}^{HLO}

We can use the results from the combined fits to determine a_{μ}^{HLO} :

where we insert the coefficients of the combined chiral and continuum fits of the Adler function to determine the q^2 -behaviour of $\hat{\Pi}(q^2)$:

$$\begin{split} \hat{\Pi}(q^2) \, \to \, \hat{\Pi}_{12}(q^2) &= -q^2 \left(\frac{a_1}{b_1 + q^2} + \frac{a_2}{b_2 + q^2} \right) \text{ or } \\ &\to \, \hat{\Pi}_{22}(q^2) = -q^2 \left(\frac{a_1}{b_1 + q^2} + \frac{a_2}{b_2 + q^2} + a_0 \right). \end{split}$$

Preliminary results for a_{μ}^{HLO} from combined fits, $N_f=2$

2 Results for the Adler function

3 Combined fits to the Adler function

4 Alternative method to determine a_{μ}

Summary and Outlook

- From the vacuum polarization we can obtain the Adler function with different methods, which agree within errors for a large range of q^2 , and are similar to the mixed representation method, cf. talk by Anthony Francis on Monday (1D).
- We presented a method to extract the Adler function in the continuum and at the physical point using a combined fit for the light quark sector.
- From the extrapolated Adler function we can extract the hadronic contribution to the anomalous magnetic moment of the muon.
- We plan to extend the analysis to the already available strange and charm data.
- E. Shintani is currently investigating AMA for the vacuum polarization.
- In the future we will also investigate methods which make use of the moments of $\Pi(q^2)$ to compute a_{μ}^{HLO} [arXiv:1403.1778, arXiv:1406.4671].

Thank you for your attention.

Backup

Preliminary results for a_{μ}^{HLO} for P[2,2], $N_f = 2$

Low q^2 -region of $\Pi(q^2)$

