Targeting the Conformal Window: Scalars on the Lattice

Evan Weinberg ${ }^{1}$
LATTICE2014
in collaboration with: Richard Brower ${ }^{1}$, Anna Hasenfratz ${ }^{2}$,
Claudio Rebbi ${ }^{1}$ and Oliver Witzel ${ }^{1}$
1: Boston University
${ }^{2}$: University of Colorado Boulder
weinbe2@bu.edu
June 23, 2014

Higgs: A Light, Composite Scalar?

- LHC results show the Higgs is a relatively light scalar.
- A composite scalar is a natural mechanism, e.g., in superconductivity.
- Its mass is a function of dynamics: avoids fine-tuning.
- Can composite strong dynamics produce a light scalar relative to the rest of the spectrum?
- Partially conserved dilatation current (PCDC)?
- Consequence of near-conformal dynamics?
- Recent lattice studies have indicated a light scalar in possibly near-conformal theories.
- SU(3) 8 flavor fundamental (Y. Aoki et al., arXiv:1403.5000)
- SU(3) 2 flavor sextet (Fodor et al. PoS(Lattice 2013)062, arXiv:1401.2176)

Targeting the Conformal Window: SU(3) fundamental

- It is difficult to target the conformal window.
- $N_{f}=4$ has confining, chirally broken behavior. No IRFP.
- $N_{f}=12$ has growing evidence for conformal behavior at an IRFP.

Fermion mass parameterization

- What if there was another knob to turn?
- Start with 12 massless fermions.

Fermion mass parameterization

- What if there was another knob to turn?
- Start with 12 massless fermions.
- Give mass to 8 of them.
- 4 remain massless fermions: $m_{\ell}=0$
- 8 tuneable massive fermions: $m_{h} \neq 0$

Fermion mass parameterization

- What if there was another knob to turn?
- Start with 12 massless fermions.
- Give mass to 8 of them.
- 4 remain massless fermions: $m_{\ell}=0$
- 8 tuneable massive fermions: $m_{h} \neq 0$

- As $m_{h} \rightarrow 0$, we recover the 12 flavor chirally symmetric theory exactly at $m_{h}=0$.

- As $m_{h} \rightarrow \infty$, we get the 4 flavor chirally broken theory due to decoupling.

Flow Diagram

Studying the $4+8$ Model

- We can tune ourselves to walking behavior by varying m_{h}.
- This is a $4+8$ flavor model to study walking dynamics.
- Gauge Action: Mixed Fundamental-Adjoint Action.
- Fermion Action: nHYP Smeared Staggered
- FUEL for HMC and Measurements
- Developed by James Osborn, Algorithms and Machines: Parallel 1F at 3:35 earlier today.
- Explorations of the $4+8$ flavor theory:
(1) Running Coupling
(2) Scale-dependent Fermion Anomalous Dimension
(3) Spectrum
(c) Finite T Phase Diagram
- Preliminary results on:
- (1) and (2) are being presented by Oliver Witzel during Tuesday's poster session.

Setting m_{h}

- Our choice of m_{h} should set how long our theory walks.
- Need to choose m_{h} large enough to see chirally broken behavior.
- Plan:
- Fix $m_{\ell} \approx 0$
- Use $\langle\bar{\psi} \psi\rangle_{\ell}$ as an order parameter for chirally broken phase.

- Start $m_{h}=m_{\ell}$: chirally symmetric.
- Raise m_{h} until onset of chiral symmetry breaking.

Physics Parameter: $\langle\bar{\psi} \psi\rangle_{l}$

- Chirally symmetric phase: $\langle\bar{\psi} \psi\rangle_{\ell} \rightarrow 0$ as $m_{\ell} \rightarrow 0$. - Parametrically small.
- Chirally broken phase: $\langle\bar{\psi} \psi\rangle_{\ell} \propto \Lambda_{\text {confinement }}^{3}$

Physics Parameter: $\langle\bar{\psi} \psi\rangle_{\ell}$

- Chirally symmetric phase: $\langle\bar{\psi} \psi\rangle_{\ell} \rightarrow 0$ as $m_{\ell} \rightarrow 0$.
- Parametrically small.
- Chirally broken phase: $\langle\bar{\psi} \psi\rangle_{\ell} \propto \Lambda_{\text {confinement }}^{3}$

Volume Dependence: Zero m_{ℓ} Limit

- Recall: $\langle\bar{\psi} \psi\rangle_{\ell}^{l_{\text {attice }}}=\frac{c m_{\ell}}{a^{2}}+\langle\bar{\psi} \psi\rangle_{\ell}^{\text {phys }}$
- Define $\left.\langle\bar{\psi} \psi\rangle_{\ell}\right|_{m_{\ell}=0.0} \equiv$ linear extrapolation of $\langle\bar{\psi} \psi\rangle_{\ell}$ to $m_{\ell}=0$.
- Linear extrapolation from $m_{\ell}=0.005,0.010$, errors in quadrature.

Volume Dependence: Zero m_{ℓ} Limit

- Recall: $\langle\bar{\psi} \psi\rangle_{\ell}^{l_{\text {attice }}}=\frac{c m_{\ell}}{a^{2}}+\langle\bar{\psi} \psi\rangle_{\ell}^{\text {phys }}$
- Define $\left.\langle\bar{\psi} \psi\rangle_{\ell}\right|_{m_{\ell}=0.0} \equiv$ linear extrapolation of $\langle\bar{\psi} \psi\rangle_{\ell}$ to $m_{\ell}=0$.
- Linear extrapolation from $m_{\ell}=0.005,0.010$, errors in quadrature.

- We find a regime of volume-independent physics for $24^{3} \times 48$ volumes.

Looking at the Scale: Wilson Flow

- Wilson Flow can be used to define a lattice scale.

Looking at the Scale: Wilson Flow

- Wilson Flow can be used to define a lattice scale.

- Scale is independent of volume.

Spectrum finite volume effects: $M_{\pi, G B}$

- Wall sources, point sinks following Gupta et al. Phys.Rev.D(43) 1991.
- Focus on the Goldstone Boson pion mass for finite size effects.

Spectrum finite volume effects: $M_{\pi, G B}$

- Wall sources, point sinks following Gupta et al. Phys.Rev.D(43) 1991.
- Focus on the Goldstone Boson pion mass for finite size effects.

- 16^{3} suffer finite size effects, while 24^{3} and 32^{3} are safe for $m_{\ell}=0.010, m_{h} \geq 0.060$.

Control and Measurements

- We've identified a chirally broken regime independent of volume effects.
- Meaningful results on modest $24^{3} \times 48$ lattices.
- 1000 configurations separated by 10 MDTU.
- 9 sets of ensembles:
- $m_{l}=0.005,0.010,0.015$ for a light flavor chiral limit.
- $m_{h}=0.060,0.080,0.100$ to test theories with different RG flow.
- There is autocorrelation depending on m_{ℓ}, m_{h}-understood and controlled with blocking.

Connected Spectrum: $M_{\pi, G B}$

- Performed correlated fit of a single cosh to folded data.

$$
C(t)=A_{\pi} \cosh \left(M_{\pi}\left(\frac{T}{2}-t\right)\right)
$$

Connected Spectrum: $M_{\pi, G B}$

- Performed correlated fit of a single cosh to folded data.

$$
C(t)=A_{\pi} \cosh \left(M_{\pi}\left(\frac{T}{2}-t\right)\right)
$$

- Fit on $t=11$ to 24 .
- Largest interval with p -value $>5 \%$ confidence.

$$
\begin{aligned}
A_{\pi} & =232(1) \\
M_{\pi} & =0.1684(3)
\end{aligned}
$$

Connected Spectrum: $M_{a_{0}}$

- Performed correlated fit of a single cosh plus oscillating term to folded data.

$$
C(t)=A_{a_{0}} \cosh \left(M_{a_{0}}\left(\frac{T}{2}-t\right)\right)+A_{\pi_{s c}}(-1)^{t} \cosh \left(M_{\pi_{s c}}\left(\frac{T}{2}-t\right)\right)
$$

Connected Spectrum: $M_{a_{0}}$

- Performed correlated fit of a single cosh plus oscillating term to folded data.

$$
C(t)=A_{a_{0}} \cosh \left(M_{a_{0}}\left(\frac{T}{2}-t\right)\right)+A_{\pi_{s c}}(-1)^{t} \cosh \left(M_{\pi_{s c}}\left(\frac{T}{2}-t\right)\right)
$$

- Fit on $t=13$ to 24 .
- Largest interval with p -value $>5 \%$ confidence.

$$
\begin{aligned}
A_{a_{0}} & =-1.73(14) \times 10^{-4} \\
M_{a_{0}} & =3.206(75) \times 10^{-1} \\
A_{\pi_{s c}} & =3.12(19) \times 10^{-5} \\
M_{\pi_{s c}} & =2.13(14) \times 10^{-1}
\end{aligned}
$$

Connected Spectrum: Overall

- Measured light flavor meson spectrum $\left(\pi, a_{0}, \rho\right)$.

Disconnected Spectrum: Stochastics and Dilution

- Stochastic sources and dilution to probe the light-flavor 0^{++}meson.
- $6 U(1)$ noise sources diluted in time, color, and even/odd spatially.
- 1728 inversions per $24^{3} \times 48$ configuration.
- Current statistics reflect $\mathbf{2 5 0}$ configurations per ensemble.
- Used improved operators for disconnected measurement.

$$
\begin{gathered}
C_{\text {conn }}(t)=-A_{a_{0}} e^{-M_{a_{0}} t}-(-1)^{t}\left(A_{\pi_{s c}} e^{-M_{\pi_{s c}} t}\right)+\cdots \\
\begin{array}{c}
C_{\text {disc }}(t)=A_{\sigma} e^{-M_{\sigma} t}-A_{a_{0}} e^{-M_{a_{0}} t}+(-1)^{t}\left(A_{\pi_{\overline{s c}}} e^{-M_{\pi_{\overline{s c}}} t}-A_{\pi_{s c}} e^{-M_{\pi_{s c}} t}\right)+\cdots \\
\downarrow \\
C_{\sigma}(t) \equiv C_{\text {disc }}(t)-C_{\text {conn }}(t)=A_{\sigma} e^{-M_{\sigma} t}+(-1)^{t}\left(A_{\pi_{\overline{s c}}} e^{-M_{\pi_{\bar{c}}} t}\right)+\cdots
\end{array}
\end{gathered}
$$

Practical Considerations

- Vacuum subtraction is noisy in $C_{\text {disc }}(t)$.
- Idea: Fit correlators with an additional constant.
- $C_{\text {conn }}(t), C_{\sigma}(t)$ have large contamination from higher energy states.
- Idea: Replace $C_{\text {conn }}(t)$ with just analytic fit to $a_{0}, \pi_{s c}$ state.

$$
\begin{aligned}
C_{\text {conn }}^{\prime}(t) & \equiv-A_{a_{0}} e^{-M_{\mathrm{a}_{0}} t}-(-1)^{t}\left(A_{\pi_{s c}} e^{-M_{\pi_{s c}} t}\right) \\
C_{\sigma}^{\prime}(t) & \equiv C_{\text {disc }}(t)-C_{\text {conn }}^{\prime}(t)
\end{aligned}
$$

- Conclusion: Consistent at large t with using measured $C_{\text {conn }}(t)$, gives consistent mass at smaller t.

Disconnected Spectrum: M_{σ}

- 250 configurations separated by 40 MDTU each.
- Errors are by jackknife analysis, blocksize of 1 .
- Data has fit constant subtracted for ease of visualization.

$$
C_{\sigma}^{\prime}(t)=A_{\sigma} \cosh \left(M_{\sigma}\left(\frac{T}{2}-t\right)\right)+(-1)^{t} A_{\pi_{\overline{s c}}} \cosh \left(M_{\pi_{\overline{s c}}}\left(\frac{T}{2}-t\right)\right)+V
$$

Disconnected Spectrum: M_{σ}

- 250 configurations separated by 40 MDTU each.
- Errors are by jackknife analysis, blocksize of 1 .
- Data has fit constant subtracted for ease of visualization.

$$
C_{\sigma}^{\prime}(t)=A_{\sigma} \cosh \left(M_{\sigma}\left(\frac{T}{2}-t\right)\right)+(-1)^{t} A_{\pi_{\overline{s c}}} \cosh \left(M_{\pi_{\overline{s c}}}\left(\frac{T}{2}-t\right)\right)+V
$$

- Fit on $t=6$ to 24 .
- Largest interval with p -value $>5 \%$ confidence.

$$
\begin{aligned}
A_{\sigma} & =9.5(17) \mathrm{e}-4 \\
M_{\sigma} & =2.665(83) \mathrm{e}-1 \\
A_{\pi_{\overline{s c}}} & =-1.8(18) \mathrm{e}-4 \\
M_{\pi_{\overline{s c}}} & =2.02(26) \mathrm{e}-1 \\
V & =-1.87(13) \mathrm{e}-2
\end{aligned}
$$

0^{++}Results

- Results for different m_{h}.
- Fit lines for $M_{\pi, G B}$ reflect PCAC relation.

Conclusion

- Model to study walking behavior with $4+8$ flavors.
- Tune to near-conformal behavior by shifting the mass of the 8 flavors.
- m_{h} can be tuned continuously as opposed to discretely for N_{f}.
- $\langle\bar{\psi} \psi\rangle_{\ell}$ on finite volume, as a probe of chiral symmetry breaking, shows a transition with m_{h}.
- Suggests physically viable parameters where simulations on moderate lattices can be done.
- The spectrum shows a splitting of the 0^{++}scalar state from the connected spectrum.

Thank you!

