Targeting the Conformal Window: Scalars on the Lattice

Evan Weinberg¹

LATTICE2014

in collaboration with: Richard Brower¹, Anna Hasenfratz², Claudio Rebbi¹ and Oliver Witzel¹

¹: Boston University ²: University of Colorado Boulder

weinbe2@bu.edu

June 23, 2014

- LHC results show the Higgs is a relatively light scalar.
- A composite scalar is a natural mechanism, e.g., in superconductivity.
- Its mass is a function of dynamics: avoids fine-tuning.
- Can composite strong dynamics produce a light scalar relative to the rest of the spectrum?
 - Partially conserved dilatation current (PCDC)?
 - Consequence of near-conformal dynamics?
- Recent lattice studies have indicated a light scalar in possibly near-conformal theories.
 - SU(3) 8 flavor fundamental (Y. Aoki et al., arXiv:1403.5000)
 - *SU*(3) 2 flavor sextet (Fodor et al. PoS(Lattice 2013)062, arXiv:1401.2176)

Targeting the Conformal Window: SU(3) fundamental

- It is difficult to target the conformal window.
- $N_f = 4$ has confining, chirally broken behavior. No IRFP.
- $N_f = 12$ has growing evidence for conformal behavior at an IRFP.

Fermion mass parameterization

- What if there was another knob to turn?
- Start with 12 massless fermions.

Fermion mass parameterization

- What if there was another knob to turn?
- Start with 12 massless fermions.
- Give mass to 8 of them.
 - 4 remain massless fermions: $m_\ell = 0$
 - 8 tuneable massive fermions: $m_h \neq 0$

Fermion mass parameterization

- What if there was another knob to turn?
- Start with 12 massless fermions.
- Give mass to 8 of them.
 - 4 remain massless fermions: $m_\ell = 0$
 - 8 tuneable massive fermions: $m_h \neq 0$

• As $m_h \rightarrow 0$, we recover the 12 flavor chirally symmetric theory exactly at $m_h = 0$.

• As $m_h \rightarrow \infty$, we get the 4 flavor chirally broken theory due to decoupling.

Studying the 4+8 Model

- We can tune ourselves to walking behavior by varying m_h .
- This is a 4+8 flavor model to study walking dynamics.
 - Gauge Action: Mixed Fundamental-Adjoint Action.
 - Fermion Action: nHYP Smeared Staggered
 - FUEL for HMC and Measurements
 - Developed by James Osborn, Algorithms and Machines: Parallel 1F at 3:35 earlier today.
- Explorations of the 4+8 flavor theory:
 - Running Coupling
 - Scale-dependent Fermion Anomalous Dimension
 - Spectrum
 - Finite T Phase Diagram
- Preliminary results on:
 - (1) and (2) are being presented by Oliver Witzel during Tuesday's poster session.

Setting m_h

- Our choice of m_h should set how long our theory walks.
- Need to choose *m_h* large enough to see chirally broken behavior.
- Plan:
 - Fix $m_{\ell} \approx 0$
 - Use ⟨ψψ⟩_ℓ as an order parameter for chirally broken phase.
 - Start m_h = m_ℓ: chirally symmetric.

Physics Parameter: $\langle \bar{\psi}\psi \rangle_{\ell}$

- Chirally symmetric phase: $\langle \bar{\psi}\psi \rangle_\ell \to 0$ as $m_\ell \to 0$.
 - Parametrically small.
- Chirally broken phase: $\langle \bar{\psi}\psi
 angle_\ell \propto \Lambda^3_{confinement}$

Physics Parameter: $\langle \bar{\psi}\psi \rangle_\ell$

- Chirally symmetric phase: $\langle \bar{\psi}\psi \rangle_\ell \to 0$ as $m_\ell \to 0$.
 - Parametrically small.
- Chirally broken phase: $\langle \bar{\psi}\psi
 angle_\ell \propto \Lambda^3_{confinement}$

Volume Dependence: Zero m_{ℓ} Limit

- Recall: $\langle \bar{\psi}\psi \rangle_{\ell}^{\textit{lattice}} = \frac{cm_{\ell}}{a^2} + \langle \bar{\psi}\psi \rangle_{\ell}^{\textit{phys}}$
- Define $\langle \bar{\psi}\psi \rangle_{\ell} |_{m_{\ell}=0.0} \equiv$ linear extrapolation of $\langle \bar{\psi}\psi \rangle_{\ell}$ to $m_{\ell}=0$.
 - Linear extrapolation from $m_{\ell} = 0.005, 0.010$, errors in quadrature.

Volume Dependence: Zero m_{ℓ} Limit

- Recall: $\langle \bar{\psi}\psi \rangle_{\ell}^{lattice} = \frac{cm_{\ell}}{a^2} + \langle \bar{\psi}\psi \rangle_{\ell}^{phys}$
- Define $\langle \bar{\psi}\psi \rangle_{\ell} |_{m_{\ell}=0.0} \equiv$ linear extrapolation of $\langle \bar{\psi}\psi \rangle_{\ell}$ to $m_{\ell}=0$.
 - Linear extrapolation from $m_\ell = 0.005, 0.010$, errors in quadrature.

• We find a regime of volume-independent physics for $24^3 \times 48$ volumes.

Looking at the Scale: Wilson Flow

• Wilson Flow can be used to define a lattice scale.

Looking at the Scale: Wilson Flow

• Wilson Flow can be used to define a lattice scale.

Scale is independent of volume.

Spectrum finite volume effects: $M_{\pi,GB}$

- Wall sources, point sinks following Gupta et al. Phys.Rev.D(43) 1991.
- Focus on the Goldstone Boson pion mass for finite size effects.

Spectrum finite volume effects: $M_{\pi,GB}$

- Wall sources, point sinks following Gupta et al. Phys.Rev.D(43) 1991.
- Focus on the Goldstone Boson pion mass for finite size effects.

• 16^3 suffer finite size effects, while 24^3 and 32^3 are safe for $m_\ell = 0.010, m_h \ge 0.060.$

- We've identified a chirally broken regime independent of volume effects.
- Meaningful results on modest $24^3 \times 48$ lattices.
- 1000 configurations separated by 10 MDTU.
- 9 sets of ensembles:
 - $m_l = 0.005, 0.010, 0.015$ for a light flavor chiral limit.
 - $m_h = 0.060, 0.080, 0.100$ to test theories with different RG flow.
- There is autocorrelation depending on m_ℓ, m_h—understood and controlled with blocking.

Connected Spectrum: $M_{\pi,GB}$

• Performed correlated fit of a single cosh to folded data.

$$C(t) = A_{\pi} \cosh\left(M_{\pi}(\frac{T}{2}-t)
ight)$$

Connected Spectrum: $M_{\pi,GB}$

• Performed correlated fit of a single cosh to folded data.

$$C(t) = A_{\pi} \cosh\left(M_{\pi}(\frac{T}{2}-t)\right)$$

• Largest interval with p-value > 5% confidence.

$$egin{aligned} A_{\pi} &= 232(1) \ M_{\pi} &= 0.1684(3) \end{aligned}$$

Connected Spectrum: M_{a_0}

• Performed correlated fit of a single cosh plus oscillating term to folded data.

$$C(t) = A_{a_0} \cosh\left(M_{a_0}(\frac{T}{2}-t)\right) + A_{\pi_{sc}}(-1)^t \cosh\left(M_{\pi_{sc}}(\frac{T}{2}-t)\right)$$

Connected Spectrum: M_{a_0}

• Performed correlated fit of a single cosh plus oscillating term to folded data.

$$C(t)=A_{a_0}{\cosh\left(M_{a_0}(rac{T}{2}-t)
ight)}+A_{\pi_{sc}}(-1)^t{\cosh\left(M_{\pi_{sc}}(rac{T}{2}-t)
ight)}$$

- Fit on *t* = 13 to 24.
- Largest interval with p-value > 5% confidence.

$$egin{aligned} A_{a_0} &= -1.73(14) imes 10^{-4} \ M_{a_0} &= 3.206(75) imes 10^{-1} \ A_{\pi_{sc}} &= 3.12(19) imes 10^{-5} \ M_{\pi_{sc}} &= 2.13(14) imes 10^{-1} \end{aligned}$$

Connected Spectrum: Overall

• Measured light flavor meson spectrum (π, a_0, ρ) .

Disconnected Spectrum: Stochastics and Dilution

- Stochastic sources and dilution to probe the light-flavor 0^{++} meson.
 - 6 U(1) noise sources diluted in time, color, and even/odd spatially.
 - **1728** inversions per $24^3 \times 48$ configuration.
 - Current statistics reflect 250 configurations per ensemble.
- Used improved operators for disconnected measurement.

$$C_{conn}(t) = -A_{a_0}e^{-M_{a_0}t} - (-1)^t \left(A_{\pi_{sc}}e^{-M_{\pi_{sc}}t}\right) + \cdots$$
$$C_{disc}(t) = A_{\sigma}e^{-M_{\sigma}t} - A_{a_0}e^{-M_{a_0}t} + (-1)^t \left(A_{\pi_{sc}}e^{-M_{\pi_{sc}}t} - A_{\pi_{sc}}e^{-M_{\pi_{sc}}t}\right) + \cdots$$

$$\mathcal{C}_{\sigma}(t) \equiv \mathcal{C}_{disc}(t) - \mathcal{C}_{conn}(t) = \mathcal{A}_{\sigma} e^{-M_{\sigma} t} + (-1)^t \left(\mathcal{A}_{\pi_{\bar{s}c}} e^{-M_{\pi_{\bar{s}c}} t}
ight) + \cdots$$

- Vacuum subtraction is noisy in $C_{disc}(t)$.
 - Idea: Fit correlators with an additional constant.
- $C_{conn}(t), C_{\sigma}(t)$ have large contamination from higher energy states.
 - Idea: Replace $C_{conn}(t)$ with just analytic fit to a_0 , π_{sc} state.

$$egin{aligned} & C_{conn}'(t) \equiv -A_{a_0}e^{-M_{a_0}t} - (-1)^t \left(A_{\pi_{sc}}e^{-M_{\pi_{sc}}t}
ight) \ & C_{\sigma}'(t) \equiv C_{disc}(t) - C_{conn}'(t) \end{aligned}$$

• Conclusion: Consistent at large t with using measured $C_{conn}(t)$, gives consistent mass at smaller t.

Disconnected Spectrum: M_{σ}

- 250 configurations separated by 40 MDTU each.
- Errors are by jackknife analysis, blocksize of 1.
- Data has fit constant subtracted for ease of visualization.

$$\mathcal{C}_{\sigma}'(t) = A_{\sigma} \mathrm{cosh}\left(M_{\sigma}(rac{T}{2}-t)
ight) + (-1)^t A_{\pi_{\widetilde{sc}}} \mathrm{cosh}\left(M_{\pi_{\widetilde{sc}}}(rac{T}{2}-t)
ight) + V$$

Disconnected Spectrum: M_{σ}

- 250 configurations separated by 40 MDTU each.
- Errors are by jackknife analysis, blocksize of 1.
- Data has fit constant subtracted for ease of visualization.

$$C_{\sigma}'(t) = A_{\sigma} \mathrm{cosh}\left(M_{\sigma}(rac{T}{2}-t)
ight) + (-1)^t A_{\pi_{sc}} \mathrm{cosh}\left(M_{\pi_{sc}}(rac{T}{2}-t)
ight) + V$$

• Largest interval with p-value > 5% confidence.

$$egin{aligned} &A_{\sigma}=9.5(17) ext{e-4}\ &M_{\sigma}=2.665(83) ext{e-1}\ &A_{\pi_{\widetilde{sc}}}=-1.8(18) ext{e-4}\ &M_{\pi_{\widetilde{sc}}}=2.02(26) ext{e-1}\ &V=-1.87(13) ext{e-2} \end{aligned}$$

0⁺⁺ Results

- Results for different m_h .
- Fit lines for $M_{\pi,GB}$ reflect PCAC relation.

- Model to study walking behavior with 4+8 flavors.
- Tune to near-conformal behavior by shifting the mass of the 8 flavors.
 - m_h can be tuned continuously as opposed to discretely for N_f .
- $\langle \bar{\psi}\psi \rangle_{\ell}$ on finite volume, as a probe of chiral symmetry breaking, shows a transition with m_h .
 - Suggests physically viable parameters where simulations on moderate lattices can be done.
- The spectrum shows a splitting of the 0⁺⁺ scalar state from the connected spectrum.

Thank you!