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QCD with external B fields

QCD with B fields at the strong scale. Found in many phenomenolocical contexts:

• Neutron stars and compact astrophysical objects, B ∼ 1010 T [Duncan and Thompson, 1992]

• First phase of off-central heavy ion collisions, B ∼ 1015 T [Skokov et al., 2009]

• Early universe, B ∼ 1016 T [Vachaspati, 1991]

We consider the heavy-ion collision scenario:

• Off-central collisions: ions generate mag-
netic fields, almost homogeneus and ortog-
onal to the reaction plane. Strength con-
trolled by

√
sNN and the impact parame-

ter.

• At LHC, B fields expected up to
eB ∼ 15m2

π

These magnetic fields can lead to relevant modifications of the strong dynamics.



QCD with external B fields

Electromagnetic background interacts only with quarks, but loop effects can modify also
the gluon dynamics.

• Non perturbative effects lead to non trivial bahavior:

. QCD phase diagram (location of the deconfinament cross over, ...)

. QCD vacuum structure (chiral symmetry breaking, ...)

. QCD equation of state (effect on the free energy of the QCD medium)

We discuss non perturbative magnetic effects on the QCD equation of state.

→ Relevant for the description of QGP evolution in non-central HIC.

• We show that the QCD medium reacts as a paramagnet to B fields

• Compute magnetic susceptibility and relative magnetic contribution to the pressure.

• Preliminary results for higher order terms.



Magnetic fields on the Lattice

• Add proper U(1) phases to SU(3) links:

Uµ(n)→ Uµ(n)uµ(n) uµ = exp (iqaµ(n))

• Periodic boundary conditions to reduce finite size ef-
fects → Quantization condition:

eiqBA = eiqB(A−LxLya
2) → qB =

2πb

LxLya2
, b ∈ Z

• ~B = Bẑ → gauge fixing ay = Bx, then:

u(q)
y (n) = eia

2qBnx u(q)
x (n)|nx=Lx = e−i a

2qLxBny

Constant flux a2B in all x-y plaquettes, exluded one
plaquette at the corner, which has an additional flux
(1− LxLy)a2B → Dirac string. Not seen if b ∈ Z

b ∈ Z

b=2.00000

• For b /∈ Z string become visible. Non-uniform B =⇒

b /∈ Z

b=2.80000



Our method

• For “small” magnetic fields: f(T,B) = f(T, 0)− 1
2
χ2(T )B2 +O(B3)

Then χ2 = − ∂2f(T,B)

∂B2

∣∣∣
B=0

... But ∂
∂B

not defined on the lattice!

Our method

• To extract χ2 one can compute finite free energy differences:
∆f(T, b) = f(T, b)− f(T, 0)

• Find an appropriate path that connects two points in parameter space
A = (T ; b)→ B = (T ; 0).

Then ∆f(T, b) = − T
V

∫ B
A

∂ logZ
∂~p

d~p

• We choose to go straight in b. We interpolate between physical points in parameter
space introducing a real valued magnetic field → we can evaluate ∂ logZ

∂b
→

∆f(T, b) = − T
V

∫ b
0
∂ logZ

∂b̃
db̃

• For eB = 2πb
LxLya2

with b /∈ Z intermediate points does not corresponde to the uniform

field case

• ∂ logZ
∂b

is not the physical magnetization.



Our method

Renormalization

• ∆f(T, b) has (eB)2-dependent divergencies. To renormalize, we performe:

∆fr(T, b) = ∆f(T, b)−∆f(0, b) .

→ Gives us divergences-free magnetic properties of the thermal medium.

QED- quenching

• Linear regime:

M = χ̃2
B

µ0
= χ2H

where B total field, H = B
µ0
−M external field, and χ2 = χ̃2

1−χ̃2
.

• In the linear regime we can use:

∆f =

∫
HdB → ∆fr = −

∫
MdB ≈ − χ̃2

µ0

∫
BdB = − χ̃2

2µ0
B2

• Our simulations are QED quenched, no backreaction from the medium → B coincides
with the external field added to the Dirac operator. The backreaction of the medium
increase ∆fR by a factor 1/(1− χ̃2)2 → Irrelevant a posteriori.



Numerical Setup

• State of art discretization

. Gauge: Tree level improved Symanzik action
[Weisz, Nucl Phys B 83; Curci, Menotti and Paffuti, Phys Lett B 83]

. Fermions: Rooted staggered fermions with stout improvement
[Morningstar and Peardon, PRD 04]

• Bare parameters taken from [Borsanyi, Endrodi, Fodor et al., JHEP 10] → Line of
constant physics.

We performed simulations at 3 values of lattice spacing:

a[fm] Ns Nt
0.2173 24 4, 6, 8, 10
0.1535 32 4, 6, 8, 10, 12
0.1249 40 4, 6, 8, 12, 16

Physical size ≈ fixed at L = 5 fm



Lattice observale

To get ∆f(T, b) we measured:

M =
∂ logZ

∂b
= −

〈
Tr

(
M−1 ∂M

∂b

)〉
b

We divide the each quantum interval into 16 parts .

Example: M for a = 0.2173 fm set
Nt = 24→ T ≈ 40 MeV
Nt = 4→ T ≈ 227 MeV

• B no more quantized → Oscilla-
tions due to Dirac string.

• Numerical integration over M
spline interpolations → ∆f

• Non vanishing T -dependet inte-
grals from b to b+ 1

• We checked our procedure does
not depend on the used interpo-
lation.
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Magnetic susceptibility

• ∆f(B, T ) ≈ 1
2
c2(T )B2. To minimize error propagation in the integration we fit:

f(b, T )− f(b− 1, T ) =

∫ b

b−1

M(B, T )dB using ∆f(b) =
1

2
c2(T )(2b− 1)

• We don’t need to start at b = 0
to obtain c2(T )

• cr2(T ) = c2(T )−c2(0) from linear
fits. Then:

χ̃2(T ) = − e
2µ0c

18~π2
L4cr2(T ) SI units

χ̂2(T ) = − L4

18π2
cr2(T ) natural units

• Blue points to check finite size
effects→ Good.
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Results

• The QCD medium is a
paramegnet in all the ex-
plored temperature.

• Sharp increase of χ̃2

above TC ∼ 150 − 160
MeV.

• We observed a linear re-
sponse up to eB ≈
0.2 GeV2.
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Fit function for the continuum limit:

χ̃2(t) =

{
A exp (−M

T
), for T ≤ T̃ inspired by HRG

a′ log ( T
M′ ), for T > T̃ inspired by perturbative limit

. Impose χ̃2(T ) ∈ C1, matching at T̃ → (5-2)=3 parameters.

. Perform the continuum limit by letting A = A0 + a2A2 or M = M0 + a2M2

. We found T̃ ≈ 160(10) MeV.



Comparison

We can compare our results with other works:
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• Taylor expantion method [Levkova and DeTar]

• Anisotropy method [Bali, Bruckmann, Endrodi et. al.]

• Generalized integral method [Bali, Bruckmann, Endrodi et. al.]

Recently, new determination with good agreement [Bali, Bruckmann, Endrodi et. al., arXiv:1406.0269]



Results

We separate different quark contributions
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• χ̃d
χ̃u
≈ ( qd

qu
)2 as one would expect

• s-contribution slightly suppressed → mass effect

• c quark contribution: qc = qu, no charge suppression. But mc � mu → Strong mass
suppression. We can expect χ̃c ≈ χ̃s



Pressure contribution

Magnetic contribution to the pressure: ∆P (B) = −∆f = 1
2
χ̃2(eB)2.

150 200 250

T [MeV]

0

0.1

0.2

0.3

0.4

0.5

0.6

∆
P

(B
)/

P
(B

=
0

)

eB=0.2GeV
2

eB=0.1GeV
2

We take P (B = 0) from [S. Borsanyi it et al, arXiv:1309.5258].
Relative magnetic contribution of the order 10% for 0.1 GeV2, 50% for 0.2 GeV2.



HRG

Low T: check with the hadron resonance model predictions [Endrődi, 2013]
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HRG

HRG predicts diamagnetic behavior at low-T , as one expects:

→ Dominant contributions from pions at low T.

• No evidence with present statistics for susch behavior.
• Recent lattice indications of a possible diamagnetic regime up to T ≈ 120 MeV.

[Bali, Bruckmann, Endrodi et. al., arXiV:1406.0269]



Higher order terms

• Preliminary results for a = 0.1535 fm, for L = 32 and Nt = 32, 6, 4
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• We fit our data with ∆f(T, b), where f(T, b) = c2
2
b2 + c4

4!
b4 + c6

6!
b6 +O(b8)

Then χ̂2n(T ) · (T 2)2n−2 = ( L2

6πNt
)2n ·N2

t c2n in natural units

• To determine thermal medium properties, subtract all vacuum contribution:

→ χr2n(T ) = χ2n(T )− χ2n(0) for each n

• One can choose to subtract only the divergent (eB)2-
term in the free energy difference. We report prelimi-
nary results for χ̂4.

Nt χ̂4 · T 4

4 2(3) · 10−4

6 2.7(9) · 10−4

32 1.4(2) · 10−6



Higher order terms

. We compare T = 0 magnetization with previous results [Bali, Bruckmann et al., JHEP 1304 (2013)

130]:
M = −χ̂2eB +

χ̂4

3!
(eB)3 +

χ̂6

5!
(eB)5 +O

(
(eB)7

)
where χ̂6 · T 8 = −1.5(5) · 10−4

. We subtract (eB)2-dependent divergence →Mr = M − (−χ2eB)
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Higher order terms

We compute the relative contribution of the quartic term :

χ̂4(eB)4/4!

χ̂r2(eB)2/2

→ The quartic order term brings relevant contributions for fields eB ≥ 0.2 GeV2
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Conclusions

• The QCD medium behaves as a paramagnet in all the explored temperatures.

• Weak magnetic activity in the confined phase. Magnetic susceptibility increases sharply
across Tc ≈ 160(10) MeV.

• The QCD medium has linear response up to eB ≈ 0.2 GeV2.

• The magnetic contribution to the preassure is (10− 50)% in the range of fields
expected at LHC, (0.1− 0.2) GeV2.

• Preliminary results for higher order terms

Future studies:

• Measure c quark contributions, which can be relevant at higher temperatures.

• Extend our investigation of higher order terms to finer lattice spacing


