Magnetic Properties of the QCD Medium

Marco Mariti

University of Pisa & INFN, Italy

Lattice 2014 The 32nd International Symposium on Lattice Field Theory Columbia University, New York

Based on C. Bonati, M. D'Elia, MM, F. Negro and F. Sanfilippo, PRD **89**, 054506 (2014) and on a work in progress with M.Mesiti

QCD with external B fields

QCD with B fields at the strong scale. Found in many phenomenolocical contexts:

- Neutron stars and compact astrophysical objects, ${
 m B} \sim 10^{10}~{
 m T}$ [Duncan and Thompson, 1992]
- First phase of off-central heavy ion collisions, ${
 m B} \sim 10^{15}$ T [Skokov et al., 2009]
- Early universe, ${
 m B} \sim 10^{16}~{
 m T}$ [Vachaspati, 1991]

We consider the heavy-ion collision scenario:

- Off-central collisions: ions generate magnetic fields, almost homogeneus and ortogonal to the reaction plane. Strength controlled by $\sqrt{s_{NN}}$ and the impact parameter.
- At LHC, B fields expected up to $eB \sim 15m_\pi^2$

These magnetic fields can lead to relevant modifications of the strong dynamics.

QCD with external B fields

Electromagnetic background interacts only with quarks, but loop effects can modify also the gluon dynamics.

- Non perturbative effects lead to non trivial bahavior:
 - ▷ QCD phase diagram (location of the deconfinament cross over, ...)
 - ▶ QCD vacuum structure (chiral symmetry breaking, ...)
 - ▷ QCD equation of state (effect on the free energy of the QCD medium)

We discuss non perturbative magnetic effects on the QCD equation of state.

 \rightarrow Relevant for the description of QGP evolution in non-central HIC.

- We show that the QCD medium reacts as a paramagnet to B fields
- Compute magnetic susceptibility and relative magnetic contribution to the pressure.

• Preliminary results for higher order terms.

Magnetic fields on the Lattice

• Add proper U(1) phases to SU(3) links:

$$U_{\mu}(n) \rightarrow U_{\mu}(n)u_{\mu}(n)$$
 $u_{\mu} = \exp\left(iqa_{\mu}(n)\right)$

Periodic boundary conditions to reduce finite size effects → Quantization condition:

$$e^{iqBA} = e^{iqB(A - L_x L_y a^2)} \to qB = \frac{2\pi b}{L_x L_y a^2} , \quad b \in \mathbb{Z}$$

•
$$\vec{B} = B\hat{z} \rightarrow$$
 gauge fixing $a_y = Bx$, then:

$$u_y^{(q)}(n) = e^{ia^2qBn_x} \quad u_x^{(q)}(n)|_{n_x = L_x} = e^{-i\ a^2qL_xBn_y}$$

Constant flux a^2B in all x-y plaquettes, exluded one plaquette at the corner, which has an additional flux $(1 - L_x L_y)a^2B \rightarrow$ Dirac string. Not seen if $b \in \mathbb{Z}$

For b ∉ Z string become visible. Non-uniform B ⇒

Our method

• For "small" magnetic fields: $f(T,B) = f(T,0) - \frac{1}{2}\chi_2(T)B^2 + \mathcal{O}(B^3)$ Then $\chi_2 = -\left.\frac{\partial^2 f(T,B)}{\partial B^2}\right|_{B=0}$... But $\frac{\partial}{\partial B}$ not defined on the lattice!

Our method

- To extract χ_2 one can compute finite free energy differences: $\Delta f(T,b)=f(T,b)-f(T,0)$
- Find an appropriate path that connects two points in parameter space $A = (T; b) \rightarrow B = (T; 0).$

Then
$$\Delta f(T,b) = -\frac{T}{V} \int_{A}^{B} \frac{\partial \log Z}{\partial \vec{p}} d\vec{p}$$

- We choose to go straight in *b*. We interpolate between physical points in parameter space introducing a real valued magnetic field \rightarrow we can evaluate $\frac{\partial \log Z}{\partial b} \rightarrow \Delta f(T, b) = -\frac{T}{V} \int_{0}^{b} \frac{\partial \log Z}{\partial \tilde{b}} d\tilde{b}$
- For $eB = \frac{2\pi b}{L_x L_y a^2}$ with $b \notin \mathbb{Z}$ intermediate points does not corresponde to the uniform field case

•
$$\frac{\partial \log Z}{\partial b}$$
 is not the physical magnetization.

Our method

Renormalization

• $\Delta f(T,b)$ has $(eB)^2$ -dependent divergencies. To renormalize, we performe:

$$\Delta f_r(T,b) = \Delta f(T,b) - \Delta f(0,b) .$$

 \rightarrow Gives us divergences-free magnetic properties of the thermal medium.

QED- quenching

Linear regime:

$$\mathbf{M} = \tilde{\chi}_2 \frac{\mathbf{B}}{\mu_0} = \chi_2 \mathbf{H}$$

where **B** total field, $\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$ external field, and $\chi_2 = \frac{\tilde{\chi}_2}{1-\tilde{\chi}_2}$. • In the linear regime we can use:

$$\Delta f = \int \mathbf{H} d\mathbf{B} \ \rightarrow \Delta f_r = -\int \mathbf{M} d\mathbf{B} \approx -\frac{\tilde{\chi}_2}{\mu_0} \int \mathbf{B} d\mathbf{B} = -\frac{\tilde{\chi}_2}{2\mu_0} \mathbf{B}^2$$

• Our simulations are QED quenched, no backreaction from the medium \rightarrow B coincides with the external field added to the Dirac operator. The backreaction of the medium increase Δf_R by a factor $1/(1-\tilde{\chi}_2)^2 \rightarrow$ Irrelevant a posteriori.

Numerical Setup

- State of art discretization
 - Gauge: Tree level improved Symanzik action
 [Weisz, Nucl Phys B 83; Curci, Menotti and Paffuti, Phys Lett B 83]
 - Fermions: Rooted staggered fermions with stout improvement [Morningstar and Peardon, PRD 04]
- Bare parameters taken from [Borsanyi, Endrodi, Fodor et al., JHEP 10] \rightarrow Line of constant physics.

We performed simulations at 3 values of lattice spacing:

a[fm]	N_s	N_t
0.2173	24	4, 6, 8, 10
0.1535	32	4, 6, 8, 10, 12
0.1249	40	4, 6, 8, 12, 16

Physical size \approx fixed at L = 5 fm

Lattice observale

To get $\Delta f(T, b)$ we measured:

$$\mathcal{M} = \frac{\partial \log Z}{\partial b} = -\left\langle \mathsf{Tr}\left(M^{-1}\frac{\partial M}{\partial b}\right)\right\rangle_{b}$$

We divide the each quantum interval into 16 parts .

Example: \mathcal{M} for a = 0.2173 fm set $N_t = 24 \rightarrow T \approx 40 \text{ MeV}$ $N_t = 4 \rightarrow T \approx 227 \text{ MeV}$

- B no more quantized → Oscillations due to Dirac string.
- Numerical integration over \mathcal{M} spline interpolations $\rightarrow \Delta f$
- Non vanishing T-dependet integrals from b to b + 1
- We checked our procedure does not depend on the used interpolation.

Magnetic susceptibility

• $\Delta f(B,T) \approx \frac{1}{2}c_2(T)B^2$. To minimize error propagation in the integration we fit: $f(b,T) - f(b-1,T) = \int_{b-1}^{b} \mathcal{M}(B,T)dB$ using $\Delta f(b) = \frac{1}{2}c_2(T)(2b-1)$

Results

- The QCD medium is a **paramegnet** in all the explored temperature.
- Sharp increase of $\tilde{\chi}_2$ above $T_C \sim 150 160$ MeV.
- We observed a linear response up to $eB \approx 0.2 \text{ GeV}^2$.

Fit function for the continuum limit:

 $\tilde{\chi}_2(t) = \begin{cases} A \exp\left(-\frac{M}{T}\right), & \text{for } T \leq \tilde{T} \text{ inspired by HRG} \\ a' \log\left(\frac{T}{M'}\right), & \text{for } T > \tilde{T} \text{ inspired by perturbative limit} \end{cases}$

▷ Impose $\tilde{\chi}_2(T) \in C^1$, matching at $\tilde{T} \to (5-2)=3$ parameters. ▷ Perform the continuum limit by letting $A = A_0 + a^2 A_2$ or $M = M_0 + a^2 M_2$ ▷ We found $\tilde{T} \approx 160(10)$ MeV.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Comparison

We can compare our results with other works:

Taylor expantion method [Levkova and DeTar]

- Anisotropy method [Bali, Bruckmann, Endrodi et. al.]
- Generalized integral method [Bali, Bruckmann, Endrodi et. al.]

Recently, new determination with good agreement [Bali, Bruckmann, Endrodi et al., arXiv:1406.0269]

Results

We separate different quark contributions

• $\frac{\tilde{\chi}_d}{\tilde{\chi}_u} pprox (\frac{q_d}{q_u})^2$ as one would expect

- s-contribution slightly suppressed \rightarrow mass effect
- c quark contribution: $q_c = q_u$, no charge suppression. But $m_c \gg m_u \rightarrow$ Strong mass suppression. We can expect $\tilde{\chi}_c \approx \tilde{\chi}_s$

(日)、

э

Pressure contribution

Magnetic contribution to the pressure: $\Delta P(B) = -\Delta f = \frac{1}{2}\tilde{\chi}_2(eB)^2$.

We take P(B = 0) from [S. Borsanyi it et al, arXiv:1309.5258]. Relative magnetic contribution of the order 10% for 0.1 GeV², 50% for 0.2 GeV².

HRG

Low T: check with the hadron resonance model predictions [Endrődi, 2013]

HRG predicts **diamagnetic** behavior at low-T, as one expects:

- \rightarrow Dominant contributions from pions at low T.
- No evidence with present statistics for susch behavior.
- Recent lattice indications of a possible diamagnetic regime up to $T \approx 120$ MeV. [Bali, Bruckmann, Endrodi et. al., arXiV:1406.0269]

Higher order terms

• Preliminary results for a = 0.1535 fm, for L = 32 and $N_t = 32, 6, 4$

Then $\hat{\chi}_{2n}(T) \cdot (T^2)^{2n-2} = (\frac{L^2}{6\pi N_t})^{2n} \cdot N_t^2 c_{2n}$ in **natural units**

• To determine thermal medium properties, subtract all vacuum contribution: $\rightarrow \chi_{2n}^r(T) = \chi_{2n}(T) - \chi_{2n}(0)$ for each n

• One can choose to subtract only the divergent $(eB)^2$ -term in the free energy difference. We report preliminary results for $\hat{\chi}_4$.

$$\begin{array}{|c|c|c|c|c|}\hline N_t & \hat{\chi}_4 \cdot T^4 \\ \hline 4 & 2(3) \cdot 10^{-4} \\ 6 & 2.7(9) \cdot 10^{-4} \\ \hline 32 & 1.4(2) \cdot 10^{-6} \\ \hline \end{array}$$

Higher order terms

▷ We compare T = 0 magnetization with previous results [Bali, Bruckmann et al., JHEP 1304 (2013) 130]: $M = -\hat{v}_{0}eB + \frac{\hat{\chi}_{4}}{(eB)^{3}} + \frac{\hat{\chi}_{6}}{(eB)^{5}} + O\left((eB)^{7}\right)$

$$M = -\hat{\chi}_2 eB + \frac{\chi_4}{3!} (eB)^3 + \frac{\chi_6}{5!} (eB)^5 + O\left((eB)^7\right)$$

where $\hat{\chi}_6 \cdot T^8 = -1.5(5) \cdot 10^{-4}$

▷ We subtract $(eB)^2$ -dependent divergence $\rightarrow M^r = M - (-\chi_2 eB)$

Higher order terms

We compute the relative contribution of the quartic term :

$$\frac{\hat{\chi}_4(eB)^4/4!}{\hat{\chi}_2^r(eB)^2/2}$$

 \rightarrow The quartic order term brings relevant contributions for fields $eB \ge 0.2 \text{ GeV}^2$

Conclusions

- The QCD medium behaves as a paramagnet in all the explored temperatures.
- Weak magnetic activity in the confined phase. Magnetic susceptibility increases sharply across $T_c \approx 160(10)$ MeV.
- The QCD medium has linear response up to $eB \approx 0.2 \text{ GeV}^2$.
- The magnetic contribution to the preassure is (10-50)% in the range of fields expected at LHC, $(0.1-0.2)~{\rm GeV}^2$.
- Preliminary results for higher order terms

Future studies:

• Measure c quark contributions, which can be relevant at higher temperatures.

• Extend our investigation of higher order terms to finer lattice spacing