Isospin Effects by Mass Reweighting

Lattice 2014 - Columbia University - New York - USA

Jacob Finkenrath

with Francesco Knechtli and Björn Leder

27. Juni 2014
Mass Reweighting

Why?

- Tuning of quark masses,
 e.g., m_s in a 2+1 simulation, isospin splitting, . . .
- Quark mass dependence
→ for small corrections: applicable and cheaper than new simulation

How?

- rewrite determinant: using pseudofermion integral
- using stochastic estimation

Observable:

$$\langle O \rangle_W = \langle OW \rangle/\langle W \rangle = \langle O\tilde{W} \rangle$$

with the corrections introduced by the mass reweighting factor of n_f-flavors
$$W = \prod_{i=1}^{n_f} [\det D(m_{new,i})/ \det D(m_{old,i})]$$

and normalized factor $\tilde{W} = W/\langle W \rangle$

One-flavor integral:

$$\frac{1}{\det M} = \int \mathcal{D}[\eta] \exp\{-\eta^\dagger M \eta\} \rightarrow \frac{1}{N_\eta} \sum_{i=1}^{N_\eta} e^{-\eta_i^\dagger (M-1) \eta_i}$$

holds for $\lambda(M + M^\dagger) > 0$

[J.F., Knechtli, Leder (2013)]
Outline

Ensembles : CLS - $n_f = 2$ - Wilson $\mathcal{O}(a)$ improv. fermions with $m_{ud} = m_u = m_d$

<table>
<thead>
<tr>
<th>Name</th>
<th>a [fm]</th>
<th>m_π [MeV]</th>
<th>N_{cnfg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>0.076</td>
<td>330</td>
<td>202</td>
</tr>
<tr>
<td>E4</td>
<td>0.066</td>
<td>580</td>
<td>100</td>
</tr>
<tr>
<td>D5</td>
<td>“</td>
<td>440</td>
<td>2012</td>
</tr>
<tr>
<td>E5</td>
<td>“</td>
<td>440</td>
<td>99</td>
</tr>
<tr>
<td>F7</td>
<td>“</td>
<td>270</td>
<td>350</td>
</tr>
<tr>
<td>G8</td>
<td>“</td>
<td>190</td>
<td>37</td>
</tr>
<tr>
<td>O7</td>
<td>0.049</td>
<td>270</td>
<td>49</td>
</tr>
</tbody>
</table>

[Fritzsch et al. (2012)]

https://twiki.cern.ch/twiki/bin/view/CLS/WebHome

- still improving the statistics
→ RESULTS are Preliminary

Goals:
- scaling of the fluctuations
- extract up- and down-quark mass
Isospin Reweighting

In general: lattice simulations are done in the Isospin symmetric limit in the light quark sector

\[m_u = m_{ud} = m_d \]

Idea: using mass reweighting to introduce Isospin breaking effects with

\[m_u + m_d = \text{const} \]

\[m_u = m_{ud} - 0.5 \cdot \Delta m_{ud} \quad \leftrightarrow \quad m_{ud} \quad \rightarrow \quad m_{ud} + 0.5 \cdot \Delta m_{ud} = m_d \]

Isospin reweighting factor:

\[W_{iso} = \frac{\det D(m_u) \det D(m_d)}{\det D(m_{ud})^2} \]

fluctuations:

stochastic fluctuations (expanding in \(\Delta m_{ud} \)):

\[\sigma_{st}^2(N_{inv}) \sim \frac{\Delta m_{ud}^4}{N_{inv}} \text{Tr} \left(\frac{1}{(DD^\dagger)^2} \right) + O(\Delta m_{ud}^6) \]

ensemble fluctuations (expanding in \(\Delta m_{ud} \)) :

\[\sigma_{ens}^2 = \Delta m_{ud}^4 \text{var} \left(\text{Tr} \left[\frac{1}{D^2} \right] \right) + O(\Delta m_{ud}^6) \]

Cost given by :

\[\frac{\sigma_{st}^2(N_{inv})}{\sigma_{ens}^2} \sim 10\% \]
Stochastic fluctuations

Stochastic fluctuations (expanding in Δm_{ud}):

$$\sigma_{st}^2(N_{inv}) \sim \frac{\Delta m_{ud}^4}{N_{inv}} \text{Tr} \frac{1}{(DD^\dagger)^2} + \mathcal{O}(\Delta m_{ud}^6)$$

$$\Rightarrow \text{chiral perturbation theory: } \text{Tr} \frac{1}{(DD^\dagger)^2} \propto \frac{\Sigma V}{m_R^3}$$

$$\sigma_{st}^2 \approx k_{st} \frac{\Delta m_{ud}^4 V}{N_{inv} m_R^3} \frac{1}{r_0^3}$$

with $k_{st} = 2.9(0.5) \times 10^{-11}$ and $q = -2.71(6)$
Ensemble fluctuations (expanding in Δm_{ud}):

$$\sigma_{\text{ens}}^2 = \Delta m_{ud}^4 \text{ var} \left(\text{Tr} \left[\frac{1}{D^2} \right] \right) + \mathcal{O}(\Delta m_{ud}^6)$$

$$\Rightarrow \text{behavior of } \text{var} \left(\text{Tr} \left[\frac{1}{D^2} \right] \right) \text{ unknown}$$

numerical observe: \rightarrow weak volume dependence V^q with $q < 1$

\Rightarrow a good fit: $q = 0.25$

$$\sigma_{\text{ens}}^2 \approx k_{\text{ens}} \frac{\Delta m_R^4 \sqrt[4]{V}}{m_R^4} \frac{1}{r_0}$$

$y = k_{\text{ens}} \ast (m_R a)^q$

with $k_{\text{ens}} = 31(39) \ast 1e^{-5}$

and $q = -3.96(14)$
Scaling of Fluctuations

Stochastic fluctuations

\[\sigma_{st}^2 \approx k_{st} \frac{\Delta m_R^4 V}{N_{inv} m_R^3} \frac{1}{r_0^3} \]

Cost given by:

\[\sigma_{st}^2(N_{inv})/\sigma_{ens}^2 \sim \frac{k'_{st}}{k'_{ens}} \frac{(LMPS)^2 L}{N_{inv} \cdot r_0^2} \]

with \(\frac{k'_{st}}{k'_{ens}} = 1e - 3 \)

10% @G8 \((m_\pi = 190 \text{ MeV}, \ a = 0.066 \text{ fm}) \) : \(N_{inv} \approx 200 \)

Ensemble fluctuations

\[\sigma_{ens}^2 \approx k_{ens} \frac{\Delta m_R^4 \sqrt[4]{V}}{m_R^4} \frac{1}{r_0} \]
Fixing the bare mass parameter

Using physical ratios built from meson masses and decay constants to fix the bare mass parameters κ_s, κ_d and κ_u:

\[R_1 = \frac{m_{K^0}^2 + m_{K^\pm}^2}{(f_{K^0} + f_{K^\pm})^2}, \quad R_2 = \frac{m_{K^0}^2 - m_{K^\pm}^2}{m_{K^0}^2 + m_{K^\pm}^2} \]

and

\[R_3 = \frac{m_{\pi^\pm}^2}{(f_{K^0} + f_{K^\pm})^2} \]

Strategie:
Use R_1 and R_2 to fix κ_s and $(\Delta m_{ud})_{bare}$ and extrapolate in R_3 towards physical light quark masses.
Quark masses

By fixing R_1 and R_2 and using the m_{PCAC} mass:

\[m_{ud}(R_3) \approx a_1 R_3 \quad \text{and} \quad \Delta m_{ud}(R_3) \approx b_0 + b_1 R_3 \]

with $R_3 \propto m_{ud}$ in χpt at LO

result:
\[\Rightarrow \] relative high precision with low statistics

future:
\[\Rightarrow \] increasing statistics and including other ensembles

with $m_{ud} = 3.21(14)$ MeV and $\Delta m_{ud} = 2.48(10)$ MeV
(at finite lattice $a = 0.066$ [fm])
Conclusion

Results:

- costs: increases with L and is around 200 inversions for G8
- fixing condition suitable to extract light quark masses
- relative good results with small statistics

Prospects:

- improving statistics
- including QED-effects
Covariance of \tilde{W} with f_{PP}

$b(t)$ measured on F7:

\[b(t) = \text{cov}(C(t), \tilde{W})/\langle C(t) \rangle \]

with $\langle C(t) \rangle = f_{PP}(t)$