

Lattice simulations of G2-QCD at finite density I

32nd International Symposium on Lattice Field Theory

Lattice 2014

Columbia University, NY, 23 June 2014

Lorenz von Smekal

Contents

- Introduction
- G₂ Gauge Theory
- Phase Diagram

A. Maas, L.v.S., B. Wellegehausen & A. Wipf, Phys. Rev. D 86 (2012) 111901(R)

• G₂-QCD Spectroscopy & Baryon Density

B. Wellegehausen, A. Maas, A. Wipf & L.v.S., Phys. Rev. D 89 (2014) 056007

Summary and outlook

Phase Diagram

QCD-like Theories

- compare lattice simulations with functional methods and effective models where there's no sign problem
- apply to ultracold fermi gases exploit analogies and more experimental data

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

QCD at finite isospin density

• strongly correlated fermions in 2+1 dimensions electronic properties of graphene

[see Dominik Smith's talk on Thu, Applications beyond QCD]

Fermion-Sign Problem

sign problem:

$$\left(\operatorname{Det} D(\mu_f)\right)^* = \operatorname{Det} D(-\mu_f)$$

• except if:

JUSTUS-LIEBIG-

UNIVERSITÄT GIESSEN

(a) two degenerate flavors with isospin chemical potential

Dyson index:

fermion determinant

$$\rightsquigarrow \operatorname{Det}(D(\mu_I)D(-\mu_I))$$
 $\beta = 2$

QCD at finite isospin density

(b) anti-unitary symmetry $TD(\mu)T^{-1} = D(\mu)^*$ $T^2 = \pm 1$

fermion color representation:two-color QCD $\beta = 1$ (i) pseudo-real $T^2 = 1$ two-color QCD $\beta = 1$ (ii) real $T^2 = -1$ adjoint QCD, or G2-QCD $\beta = 4$

Two-Color QCD

GIESSEN

1.4

- smallest exceptional Lie group subgroup of SO(7)
- rank = 2 (as SU(3)), dimension = 14

7 colors, 14 gluons

fund. reps.: $\{7\} = (1,0), \, \{14\} = (0,1)$ (= adjoint)

- smallest exceptional Lie group subgroup of SO(7)
- rank = 2 (as SU(3)), dimension = 14

7 colors, 14 gluons

fund. reps.: $\{7\} = (1, 0), \{14\} = (0, 1)$ (= adjoint)

simple & simply connected, no center

yet (as SU(3)), 1st order deconfinement finite *T* phase transition in pure gauge theory (also in chiral condensate)

Holland, Minkowski, Pepe & Wiese, Nucl. Phys. B 668 (2003) 207 Pepe & Wiese, NPB 768 (2007 Danzer, Gattringer, Maas, JHEP 01 (2009) 024

PRD 83 (2011) 114502

- smallest exceptional Lie group subgroup of SO(7)
- rank = 2 (as SU(3)), dimension = 14

7 colors, 14 gluons

fund. reps.: $\{7\} = (1, 0), \, \{14\} = (0, 1)$ (= adjoint)

• simple & simply connected, no center

yet (as SU(3)), 1st order deconfinement finite *T* phase transition in pure gauge theory (also in chiral condensate)

• all reps. real

Dirac operator $D(\mu)$ has antiunitary symmetry S, with $S^2 = -1$ (symplectic, $\beta = 4$) and extended SU(2N_f) flavor symmetry

no sign problem

real and positive for single flavor: SU(2) \rightarrow U(1)_{\rm B} 2 Goldstone bosons: scalar (anti)diquarks

Holland, Minkowski, Pepe & Wiese, Nucl. Phys. B 668 (2003) 207 Pepe & Wiese, NPB 768 (2007 Danzer, Gattringer, Maas, JHEP 01 (2009) 024

PRD 83 (2011) 114502

breaks down to QCD

$$\begin{array}{c} \text{Higgs} \\ G_2 \longrightarrow SU(3) \end{array}$$

coset:

 $G_2/SU(3) \sim SO(7)/SO(6) \sim S^6$

 $\{7\} \rightarrow \{3\} \oplus \{\bar{3}\} \oplus \{1\}$ $\{14\} \rightarrow \{3\} \oplus \{\bar{3}\} \oplus \{8\}$

Wellegehausen, Wipf & Wozar, PRD 83 (2011) 114502

breaks down to QCD

$$\begin{array}{c} \text{Higgs} \\ G_2 \longrightarrow SU(3) \end{array}$$

coset:

$$G_2/SU(3) \sim SO(7)/SO(6) \sim S^6$$

$$\{7\} \rightarrow \{3\} \oplus \{\bar{3}\} \oplus \{1\}$$

$$\{14\} \rightarrow \{3\} \oplus \{\bar{3}\} \oplus \{8\}$$
heavy gauge

Wellegehausen, Wipf & Wozar, PRD 83 (2011) 114502

breaks down to QCD

Higgs
$$G_2 \longrightarrow SU(3)$$

coset:

$$G_2/SU(3) \sim SO(7)/SO(6) \sim S^6$$

$$\{7\} \rightarrow \{3\} \oplus \{\bar{3}\} \oplus \{1\}$$

$$\{14\} \rightarrow \{3\} \oplus \{\bar{3}\} \oplus \{8\}$$
heavy gauge

Wellegehausen, Wipf & Wozar, PRD 83 (2011) 114502

1.2

1.4

G₂-QCD at Finite Density

UNIVERSITÄT

DARMSTADT

G₂ Gauge Theory at Finite Density

- but has fermionic baryons also (as adjoint QCD, in principle)
- finite baryon density (bosonic and fermionic)

Maas, LvS, Wellegehausen & Wipf, Phys. Rev. D 86 (2012) 111901R

G₂-QCD Phase Diagram

• 1 flavor dynamcial Wilson

Maas, LvS, Wellegehausen & Wipf, Phys. Rev. D 86 (2012) 111901R

G₂ Spectroscopy

 $\{7\} \otimes \{7\} = \{1\} \oplus \{7\} \oplus \{14\} \oplus \{27\} \\ \{7\} \otimes \{7\} \otimes \{7\} = \{1\} \oplus 4 \cdot \{7\} \oplus 2 \cdot \{14\} \oplus \dots \\ \{14\} \otimes \{14\} = \{1\} \oplus \{14\} \oplus \{27\} \oplus \dots, \\ \{14\} \otimes \{14\} \otimes \{14\} = \{1\} \oplus \{7\} \oplus 5 \cdot \{14\} \oplus \dots, \\ \{7\} \otimes \{14\} \otimes \{14\} = \{1\} \oplus \dots$

T:	(x, s, C, F)	

mesons (baryon number 0)						
Name	O	Т	J	Ρ	С	
π	$ar{u}\gamma_5 d$	SASS	0	-	+	
η	$ar{u}\gamma_5 u$	SASS	0	-	+	
а	ūd	SASS	0	+	+	_
f	ūu	SASS	0	+	+	
ρ	$ar{u}\gamma_\mu d$	SSSA	1	-	+	
ω	$ar{u}\gamma_{\mu}u$	SSSA	1	-	+	
b	$ar{u}\gamma_5\gamma_\mu oldsymbol{d}$	SSSA	1	+	+	
h	$ar{u}\gamma_5\gamma_\mu u$	SSSA	1	+	+	

	diquarks (baryon number 2)						
	Name	\mathcal{O}	Т	J	Ρ	С	
	d(0 ⁺⁺)	$ar{u}^{C}\gamma_5 u + c.c.$	SASS	0	+	+	
	$d(0^{+-})$	$ar{u}^{C}\gamma_5 u- {m{c}}.{m{c}}.$	SASS	0	+	-	
seit 1558	d(0 ⁻⁺)	$\bar{u}^{c}u+c.c.$	SASS	0	-	+	
	d(0)	$ar{u}^{ extsf{C}}u- extsf{c}. extsf{c}.$	SASS	0	-	-	
	d(1 ⁺⁺)	$ar{u}^{C}\gamma_{\mu}oldsymbol{d} - ar{oldsymbol{d}}^{C}\gamma_{\mu}oldsymbol{u} + oldsymbol{c}.oldsymbol{c}.$	SSSA	1	+	+	
	d(1 ⁺⁻)	$ar{u}^{C}\gamma_{\mu}oldsymbol{d}-ar{oldsymbol{d}}^{C}\gamma_{\mu}oldsymbol{u}-oldsymbol{c}.oldsymbol{c}.$	SSSA	1	+	-	
	d(1 ⁻⁺)	$ar{u}^{ extsf{C}}\gamma_5\gamma_\mu d - ar{d}^{ extsf{C}}\gamma_5\gamma_\mu u + c.c.$	SSSA	1	-	+	
	d(1)	$ar{u}^{ extsf{C}}\gamma_5\gamma_\mu oldsymbol{d} - ar{oldsymbol{d}}^{ extsf{C}}\gamma_5\gamma_\mu oldsymbol{u} - oldsymbol{c}.oldsymbol{c}.$	SSSA	1	-	_	

exotic particles (baryon number 1)						
Name	O	Т	J	Р	С	
N′	$\mathcal{T}^{abc}(ar{u}_a\gamma_5 d_b)u_c$	SAAA	1/2	±	±	
Δ'	$\mathcal{T}^{abc}(ar{u}_{a}\gamma_{\mu}u_{b})u_{c}$	SSAS	3/2	±	±	
Hybrid	$\epsilon_{abcdefg} \textit{u}^{a} \textit{F}^{bc}_{\mu u} \textit{F}^{de}_{\mu u} \textit{F}^{fg}_{\mu u}$	SSSS	1/2	±	±	

baryons (baryon number 3)					
Name	Ø	Т	J	Р	С
N	$T^{abc}(ar{u}_a^{ m C}\gamma_5 d_b)u_c$	SAAA	1/2	±	±
Δ	$T^{abc}(ar{u}_a^{ m C}\gamma_\mu u_b)u_c$	SSAS	3/2	±	±

JUSTUS-LIEBIG-

23 June 2014 | Lo. Smekal | p. 12

G₂ Spectroscopy

• $N_f = 1$: real and positive for single flavor: $SU(2) \rightarrow U_B(1)$ • $N_f = 2$: 2 Goldstone bosons: scalar (anti)diquarks exact mass relations $m_{d(0^+)} = m_{\pi(0^-)}$ 1.2 $m_{d(1^+)} = m_{\rho(1^-)}$ $d(0^+) \vdash$ Ж 1.1 ж ¥ $d(1^{+})$ 1.0 Ж Ж Ж 0.9 ж ж 0.8 Ж ً Ж Ж 0.7 ¥ m釆 ً * 0.6 Name $m_{d(0^+)}$ κ 0.5 Heavy ensemble 1.05 326 MeV0.147¥ 0.4 Light ensemble 0.96 0.15924 247 MeV * $\beta = 0.96$ 0.3 0.2 0.148 0.152 0.156 0.160 κ Wellegehausen, Maas, Wipf & LvS, PRD 89 (2014) 056007

G₂ Spectroscopy

heavy ensemble

liquid-gas transition of G2 nuclear matter?

Summary & Outlook

• G₂-QCD, a useful laboratory for finite density studies

- no sign problem, most QCD-like
- finite baryon density region of phase diagram with MC simulations
- refine functional methods and models
- test effective lattice theories for heavy quarks

spectroscopy & baryon density

- physics of bosonic baryons as in two-color QCD
- fermionic baryons dominate above G2-nuclear matter transition

Helmholtz International Center

- further clarify nature of cold and dense phases

[to be continued in Bjoern Wellegehausen's talk next]

23 June 2014 | Lorenz von Smekal | p. 17

Summary & Outlook

• G₂-QCD, a useful laboratory for finite density studies

- no sign problem, most QCD-like
- finite baryon density region of phase diagram with MC simulations
- refine functional methods and models
- test effective lattice theories for heavy quarks

spectroscopy & baryon density

- physics of bosonic baryons as in two-color QCD
- fermionic baryons dominate above G2-nuclear matter transition
- further clarify nature of cold and dense phases

[to be continued in Bjoern Wellegehausen's talk next]

Thank You for Your Attention!

23 June 2014 | Lorenz von Smekal | p. 17

20928 CPUs

778 GPUs

Green

Computing

LOEWE-CSC