

Lattice simulations of $\mathbf{G}_{\mathbf{2}} \mathbf{- Q C D}$ at finite density \mathbf{I}

$32^{\text {nd }}$ International Symposium on Lattice Field Theory

Lattice 2014

Lorenz von Smekal

Contents

- Introduction

- \mathbf{G}_{2} Gauge Theory
- Phase Diagram
A. Maas, L.v.S., B. Wellegehausen \& A. Wipf, Phys. Rev. D 86 (2012) 111901(R)
- G2-QCD Spectroscopy \& Baryon Density
B. Wellegehausen, A. Maas, A. Wipf \& L.v.S., Phys. Rev. D 89 (2014) 056007
- Summary and outlook

Phase Diagram

QCD-like Theories

- compare lattice simulations with functional methods and effective models where there's no sign problem
- apply to ultracold fermi gases exploit analogies and more experimental data

- strongly correlated fermions in 2+1 dimensions electronic properties of graphene
[see Dominik Smith's talk on Thu, Applications beyond QCD]

Fermion-Sign Problem

sign problem:

$$
\left(\operatorname{Det} D\left(\mu_{f}\right)\right)^{*}=\operatorname{Det} D\left(-\mu_{f}\right)
$$

- except if:
(a) two degenerate flavors with isospin chemical potential
fermion determinant $\rightsquigarrow \operatorname{Det}\left(D\left(\mu_{I}\right) D\left(-\mu_{I}\right)\right)$

$$
\beta=2
$$

QCD at finite isospin density

(b) anti-unitary symmetry $\quad T D(\mu) T^{-1}=D(\mu)^{*} \quad T^{2}= \pm 1$
fermion color representation:
(i) pseudo-real $\quad T^{2}=1$
two-color QCD
$\beta=1$
(ii) real $\quad T^{2}=-1 \quad$ adjoint $\mathbf{Q C D}$, or $\mathbf{G}_{2}-\mathbf{Q C D}$
$\beta=4$

Two-Color QCD

- Polyakov-Quark-Meson-Diquark model phase diagram:
- Lattice simulations:

Strodthoff \& L.v.S., PLB 731 (2014) 350

Can we describe the two-color world with the 3d effective lattice theory for heavy quarks? [cf. Philipp Scior's talk]

Cotter, Giudice, Hands \& Skullerud,
PRD 87 (2013) 034507

\mathbf{G}_{2} Gauge Theory

- smallest exceptional Lie group subgroup of SO(7)
- rank $=2$ (as SU(3)), dimension $=14$

7 colors, 14 gluons
fund. reps.: $\{7\}=(1,0),\{14\}=(0,1)(=$ adjoint $)$

G $_{2}$ Gauge Theory

- smallest exceptional Lie group subgroup of SO(7)
- rank $=2$ (as SU(3)), dimension $=14$

7 colors, 14 gluons
fund. reps.: $\{7\}=(1,0),\{14\}=(0,1)$ (= adjoint)

- simple \& simply connected, no center yet (as $\operatorname{SU}(3)$), $1^{\text {st }}$ order deconfinement finite T phase transition in pure gauge theory (also in chiral condensate)

Holland, Minkowski, Pepe \& Wiese, Nucl. Phys. B 668 (2003) 207 Pepe \& Wiese, NPB 768 (2007) 21
Danzer, Gattringer, Maas, JHEP 01 (2009) 024
Wellegehausen, Wipf \& Wozar, PRD 83 (2011) 114502

\mathbf{G}_{2} Gauge Theory

- smallest exceptional Lie group subgroup of SO(7)
- rank = 2 (as SU(3)), dimension = 14

7 colors, 14 gluons
fund. reps.: $\{7\}=(1,0),\{14\}=(0,1)(=$ adjoint $)$

- simple \& simply connected, no center yet (as SU(3)), $1^{\text {st }}$ order deconfinement finite T phase transition in pure gauge theory (also in chiral condensate)
- all reps. real

Dirac operator $\mathbf{D}(\mu)$ has antiunitary symmetry \mathbf{S}, with $\mathrm{S}^{2}=-1$ (symplectic, $\beta=4$) and extended $\operatorname{SU}\left(2 \mathrm{~N}_{\mathrm{f}}\right)$ flavor symmerty

Holland, Minkowski, Pepe \& Wiese, Nucl. Phys. B 668 (2003) 207
Pepe \& Wiese, NPB 768 (2007) 21
Danzer, Gattringer, Maas, JHEP 01 (2009) 024
Wellegehausen, Wipf \& Wozar, PRD 83 (2011) 114502

- no sign problem
real and positive for single flavor: $\mathrm{SU}(2) \rightarrow \mathbf{U}(1)_{\mathrm{B}}$ 2 Goldstone bosons: scalar (anti)diquarks

\mathbf{G}_{2} Gauge Theory

- breaks down to QCD

Higgs

$$
G_{2} \longrightarrow S U(3)
$$

coset:

$$
\begin{aligned}
& G_{2} / S U(3) \sim S O(7) / S O(6) \sim S^{6} \\
&\{7\} \rightarrow\{3\} \oplus\{\overline{3}\} \oplus\{1\} \\
&\{14\} \rightarrow\{3\} \oplus\{\overline{3}\} \oplus\{8\}
\end{aligned}
$$

Wellegehausen, Wipf \& Wozar, PRD 83 (2011) 114502

\mathbf{G}_{2} Gauge Theory

- breaks down to QCD

Higgs
$G_{2} \longrightarrow S U(3)$
coset:

$$
G_{2} / S U(3) \sim S O(7) / S O(6) \sim S^{6}
$$

$\begin{aligned}\{7\} & \rightarrow\{3\} \oplus\{\overline{3}\} \oplus\{1\}^{<} \text {massive Higgs } \\ \{14\} & \rightarrow\{3\} \oplus\{\overline{3}\} \rightarrow\{8\}^{\text {\& }} \text { _gluons }\end{aligned}$

\mathbf{G}_{2} Gauge Theory

- breaks down to QCD

Higgs

$$
G_{2} \longrightarrow S U(3)
$$

coset:

$$
G_{2} / S U(3) \sim S O(7) / S O(6) \sim S^{6}
$$

$\{7\}$	$\rightarrow\{3\} \oplus\{\overline{3}\}$
$\{14\}$	$\rightarrow\{1\}^{\text {massive Higgs }}$
heavy gauge	$\{3\} \oplus\{\overline{3}\}$

- G_{2} glueball sectrum, Casimir scaling \& string breaking

Pepe \& Wiese, NPB 768 (2007) 21
Wellegehausen et al., PRD 83 (2011) 016001
Lacroix et al., PRD 87 (2013) 054025

- vortices, monopoles, instantons...

Greensite et al., PRD 75 (2007) 034501
Di Giacomo et al., JHEP 10 (2008) 096
Ilgenfritz \& Maas, PRD 86 (2012) 114508

Wellegehausen, Wipf \& Wozar, PRD 83 (2011) 114502

$\mathbf{G}_{2}-\mathbf{Q C D}$ at Finite Density

$U(1)_{B}$ breaks spontaneously at $\mu_{B}=m_{d_{0}^{+}}=m_{\pi}$

- diquark condensation as in $\mathrm{QC}_{2} \mathrm{D}$

Bjoern Wellegehausen, PhD thesis, Jena 2012

\mathbf{G}_{2} Gauge Theory at Finite Density

- but has fermionic baryons also (as adjoint QCD, in principle)
- finite baryon density (bosonic and fermionic)

Polyakov loop

quark condensate

baryon density

G_{2} nuclear matter?

Maas, LvS, Wellegehausen \& Wipf, Phys. Rev. D 86 (2012) 111901R

G $_{2}$-QCD Phase Diagram

- 1 flavor dynamcial Wilson

Maas, LvS, Wellegehausen \& Wipf, Phys. Rev. D 86 (2012) 111901R

\mathbf{G}_{2} Spectroscopy

$$
\begin{aligned}
\{7\} \otimes\{7\} & =\{1\} \oplus\{7\} \oplus\{14\} \oplus\{27\} \\
\{7\} \otimes\{7\} \otimes\{7\} & =\{1\} \oplus 4 \cdot\{7\} \oplus 2 \cdot\{14\} \oplus \ldots \\
\{14\} \otimes\{14\} & =\{1\} \oplus\{14\} \oplus\{27\} \oplus \ldots, \\
\{14\} \otimes\{14\} \otimes\{14\} & =\{1\} \oplus\{7\} \oplus 5 \cdot\{14\} \oplus \ldots, \\
\{7\} \otimes\{14\} \otimes\{14\} & =\{1\} \oplus \ldots
\end{aligned}
$$

mesons (baryon number 0)

Name	\mathcal{O}	T	J	P	C
π	$\bar{u} \gamma_{5} d$	SASS	0	-	+
η	$\bar{u} \gamma_{5} u$	SASS	0	-	+
a	$\bar{u} d$	SASS	0	+	+
f	$\bar{u} u$	SASS	0	+	+
ρ	$\bar{u} \gamma_{\mu} d$	SSSA	1	-	+
ω	$\bar{u} \gamma_{\mu} u$	SSSA	1	-	+
b	$\bar{u} \gamma_{5} \gamma_{\mu} d$	SSSA	1	+	+
h	$\bar{u} \gamma_{5} \gamma_{\mu} u$	SSSA	1	+	+

diquarks (baryon number 2)

Name	\mathcal{O}	T	J	P	C
$d\left(0^{++}\right)$	$\bar{u}^{\mathrm{C}} \gamma_{5} u+$ c.c.	SASS	0	+	+
$d\left(0^{+-}\right)$	$\bar{u}^{\mathrm{C}} 5_{5} u-$ c.c.	SASS	0	+	-
$d\left(0^{-+}\right)$	$\bar{u}^{\mathrm{C}} u+$ c.c.	SASS	0	-	+
$d\left(0^{--}\right)$	$\bar{u}^{\mathrm{C}} u-$ c.c.	SASS	0	-	-
$d\left(1^{1+}\right)$	$\bar{u}^{\mathrm{C}} \gamma_{\mu} d-\bar{d}^{\mathrm{C}} \gamma_{\mu} u+$ c.c.	SSSA	1	+	+
$d\left(1^{+-}\right)$	$\bar{u}^{\mathrm{C}} \gamma_{\mu} d-\bar{d}^{\mathrm{C}} \gamma_{\mu} u-$ c.c.	SSSA	1	+	-
$d\left(1^{-+}\right)$	$\bar{u}^{\mathrm{C}} \gamma_{5} \gamma_{\mu} d-\bar{d}^{\mathrm{C}} \gamma_{5} \gamma_{\mu} u+$ c.c.	SSSA	1	-	+
$d\left(1^{--}\right)$	$\bar{u}^{\mathrm{C}} \gamma_{5} \gamma_{\mu} d-\bar{d}^{\mathrm{C}} \gamma_{5} \gamma_{\mu} u-$ c.c.	SSSA	1	-	-

exotic particles (baryon number 1)

Name	\mathcal{O}	T	J	P	C
N^{\prime}	$T^{a b c}\left(\bar{u}_{a} \gamma_{5} d_{b}\right) u_{c}$	SAAA	$1 / 2$	\pm	\pm
Δ^{\prime}	$T^{a b c}\left(\bar{u}_{a} \gamma_{\mu} u_{b}\right) u_{c}$	SSAS	$3 / 2$	\pm	\pm
Hybrid	$\epsilon_{a b c d e f g} u^{a} F_{\mu \nu}^{b c} F_{\mu \nu}^{d e} F_{\mu \nu}^{f g}$	SSSS	$1 / 2$	\pm	\pm

baryons (baryon number 3)

Name	\mathcal{O}	T	J	P	C
N	$T^{a b c}\left(\bar{u}_{a}^{C} \gamma_{5} d_{b}\right) u_{c}$	SAAA	$1 / 2$	\pm	\pm
Δ	$T^{a b c}\left(\bar{u}_{a}^{C} \gamma_{\mu} u_{b}\right) u_{c}$	SSAS	$3 / 2$	\pm	\pm

\mathbf{G}_{2} Spectroscopy

- $\boldsymbol{N}_{f}=1$: real and positive for single flavor: $S U(2) \rightarrow U_{B}(1)$

2 Goldstone bosons: scalar (anti)diquarks

Wellegehausen, Maas, Wipf \& LvS, PRD 89 (2014) 056007

\mathbf{G}_{2} Spectroscopy

Wellegehausen, Maas, Wipf \& LvS, PRD 89 (2014) 056007

23 June 2014 | Lorenz von Smekal | p. 14

Finite Baryon Density

heavy ensemble

Wellegehausen, Maas, Wipf \& LvS, PRD 89 (2014) 056007

23 June 2014 | Lorenz von Smekal | p. 15

Finite Baryon Density

Wellegehausen, Maas, Wipf \& LvS, PRD 89 (2014) 056007

Finite Baryon Density

heavy ensemble

light ensemble

$$
n_{q} a^{3}
$$

Wellegehausen, Maas, Wipf \& LvS, PRD 89 (2014) 056007

Finite Baryon Density

light ensemble

$1^{\text {st }}$ order?
liquid-gas transition of G2 nuclear matter?

Wellegehausen, Maas, Wipf \& LvS, PRD 89 (2014) 056007

Summary \& Outlook

- \mathbf{G}_{2}-QCD, a useful laboratory for finite density studies
- no sign problem, most QCD-like
- finite baryon density region of phase diagram with MC simulations
- refine functional methods and models
- test effective lattice theories for heavy quarks
- spectroscopy \& baryon density
- physics of bosonic baryons as in two-color QCD
- fermionic baryons dominate above G_{2}-nuclear matter transition
- further clarify nature of cold and dense phases
[to be continued in Bjoern Wellegehausen's talk next]

Summary \& Outlook

- \mathbf{G}_{2}-QCD, a useful laboratory for finite density studies
- no sign problem, most QCD-like
- finite baryon density region of phase diagram with MC simulations
- refine functional methods and models
- test effective lattice theories for heavy quarks
- spectroscopy \& baryon density
- physics of bosonic baryons as in two-color QCD
- fermionic baryons dominate above G_{2}-nuclear matter transition
- further clarify nature of cold and dense phases
[to be continued in Bjoern Wellegehausen's talk next]

Thank You for Your Attention!

