

A study of scattering in open charm

Sinéad M Ryan for the Hadron Spectrum Collaboration

Lattice 2014, 27th June 2014

Introduction	Background	Methodology	Results
	•0	000000	000000

MY CHARMING COLLABORATORS...

Graham Moir, Mike Peardon, Christopher Thomas

MY CHARMING COLLABORATORS...

Graham Moir, Mike Peardon, Christopher Thomas

Outline

- Background and calculation details
- Results
 - $D\pi$: I = 3/2 (preliminary); I = 1/2 (very preliminary)
 - *DK*: I = 0 (very preliminary); I = 1 (very preliminary)
- Outlook

Introduction	Background	Methodology	Results
	00	000000	000000

LATTICES FOR OPEN CHARM SCATTERING

described in detail in 1301.7670 and 1204.5425

- Symanzik-improved anisotropic gauge action with tree-level tadpole-improved coefficients and $N_f = 2 + 1$
- Anisotropic clover action with stout-smeared spatial links
- $\xi = a_s/a_t = 3.5$
- $a_s \approx 0.12 \text{ fm}, \ a_t^{-1}(m_\Omega) = 5.67(4) \text{ GeV}$
- $20^3, 24^3 \times 128$
- $m_l \sim 400 \text{ MeV}$
- distillation

Introduction	Background	Methodology	Results
	00	● 00 000	000000

HADSPEC RECIPE FOR (SINGLE MESON) SPECTROSCOPY

- a basis of local and non-local operators from distilled fields: \mathcal{O} of the form $\overline{\Psi}(\vec{x}, t)\Gamma D_i D_j \dots \Psi(\vec{x}, t)$
- build a correlation matrix of two-point functions

$$C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0
angle = \sum_n rac{Z_i^n Z_j^{n\dagger}}{2E_n} e^{-E_n t}$$

• use a variational method - solve a generalised eigenvalue problem

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

this gives

- eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} \left[1 + O(e^{-\Delta E t})\right]$ principal correlator
- eigenvectors: related to overlaps $Z_i^{(n)} = \sqrt{2E_n} e^{E_n t_0/2} v_j^{(n)\dagger} C_{ji}(t_0)$

00 000 00 00000	Introduction	Background	Methodology	Results
		00	00000	000000

• use overlaps to assign each extracted level a continuum spin

- operators of definite \mathcal{J}^{PC} constructed in step 1 are subduced into the relevant irrep
- a subduced operator carries a "memory" of continuum spin \mathcal{J} from which it was subduced it overlaps predominantly with states of this \mathcal{J} .

Introduction	Background	Methodology	Results
	00	00000	000000

Open charm spectrum

Lattice ($M_{\pi} \sim 400 \text{ MeV}$). 2000 Experiment $M - M_{\eta_c}/2 \quad (MeV)$ $\overline{D_c}\overline{K}$ Dπ 500 Dπ 0^+ 1^+ 2^+ 3^+ 1^{-} 2^{-} 3 4^{+} 0 4

Moir et al [JHEP 05 (2013) 021]

Clover anisotropic, relativistic charm; $N_f = 2 + 1, 24^3 \times 128, a_s \sim 0.12 \text{fm}, M_{\pi}L \sim 6, M_{\pi} \approx 400 \text{MeV}$

Introduction	Background	Methodology	Results
	00	00000	000000

Meson scattering

- Finite box \Rightarrow discrete spectrum
- Lüscher: energy levels in finite volume give infinite volume scattering phase shift at $E_{\rm cm}$
- Map out the phase shift to get resonance parameters:

 $\sigma_l(E) \propto \sin^2 \delta_l(E) = (\Gamma/2)^2 / ((E - E_R)^2 + (\Gamma/2)^2)$

Introduction	Background	Methodology	Results
	00	00000	000000

Meson scattering

- Finite box \Rightarrow discrete spectrum
- Lüscher: energy levels in finite volume give infinite volume scattering phase shift at E_{cm}
- Map out the phase shift to get resonance parameters:

 $\sigma_l(E) \propto \sin^2 \delta_l(E) = (\Gamma/2)^2 / ((E - E_R)^2 + (\Gamma/2)^2)$

- many multi-hadron energy levels needed:
 - single and multi-hadron operaters; non-zero P_{cm}, different box sizes (shapes), twisted bcs etc
- reduced symmetry means mixing between partial waves

Introduction	Background	Methodology	Results
	00	000000	000000
			f

Coupled channels

- Lüscher approach and extensions successfully used to extract elastic hadron-hadron scattering phase shifts
- Extensions for outside center-of-mass and above the inelastic thresholds proposed: He et al '05; Döring et al '11; Aoki et al '11; Briceno & Davoudi '12; Hansen & Sharpe '12
- 1211.0929, Guo et al: a practical strategy to extract scattering parameters of coupled-channel systems in moving center-of-mass frame Results for *K*π presented by D. Wilson [talk] and in 1406.4158

Introduction	Background	Methodology	Results
	00	000000	000000

The operator construction for multi-mesons

- use distillation: redefinition of quark smearing
 - operators of definite relative momentum at source and sink
 - variational analysis of a matrix of correlators
- construct two-point correlators: $\langle 0|\mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0)|0\rangle$ with two classes of interpolating field \mathcal{O}_i^{\dagger}
 - single-meson operators $\bar{\Psi} \Gamma \Psi$
 - two-meson operators with definite relative and total momentum $(\vec{P}): (\bar{\Psi}\Gamma_1\Psi)_{\vec{P}_1}(\bar{\Psi}\Gamma_2\Psi)_{\vec{P}_2}$ [Thomas et al 1107.1930]
 - $\vec{P} = \vec{p}_1 + \vec{p}_2$ and $\vec{P} = [0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]$
- operators are variationally optimised
- all relevant Wick contractions included
- two volumes used here: $20^3(L \approx 2.4 fm), 24^3(L \approx 2.9 fm)$

(Preliminary and Very Preliminary) **Results**

Introduction	Backgro 00	JND	M	ETHODOLOGY 00000		Results
$D\pi (I = 3/2)$	2) PHASE SH	IIFT	P		NARY	
	Opt		attice 20.	15		
0.5	0.40 0.42		lcm 0.46	0.48	0.50	
- 10 - 20 © - 30				Ŧ		
- 40 - 50 - 60	P=(0,0,0) P=(0,0,1) P=(0,1,1) P=(1,1,1)			Δππ	D*p	

• consider l = 0 since at modest momenta $\delta_0 \ll \delta_2 \ll \delta_4 \dots$

• no resonance, weakly repulsive interaction

Introduction	Background	Methodology	Results
	00	000000	00000

VERY PRELIMINARY

$$D\pi$$
: $(I = 1/2), \ \vec{P} = (0, 0, 0)$

• 1 volume: 24^3 ; $D, D\pi, D\eta$ operators; A_1 irrep

• additional threshold: $D_s \bar{K} \sim 0.44$

INTRODUCTION BA	ACKGROUND	Methodology	RESULTS
00	0	000000	000000
			6

$$DK \; (I=0) \; ec{P} = (0,0,0)$$

VERY PRELIMINARY

• single-meson D_s , two-meson DK operators; 2 volumes

Summary and Outlook

- $D\pi$ phase shift for I = 3/2 extracted: no resonance, weakly repulsive interaction
- Preliminary results for the spectrum extracted in $D\pi I = 1/2$ and DK I = 0, 1.
- The extracted states are shifted away from the non-interacting levels and the shift can be determined with precision.
- $D\bar{K}$ also being studied.
- More irreps and statistics being accumulated.
- A coupled-channel analysis to extract scattering parameters is planned.