A study of scattering in open charm

Sinéad M Ryan
for the Hadron Spectrum Collaboration

Lattice 2014, 27 ${ }^{\text {th }}$ June 2014

MY ChARMING COLLABORATORS...

Graham Moir, Mike Peardon, Christopher Thomas

my Charming collaborators...

Graham Moir, Mike Peardon, Christopher Thomas

Outline

- Background and calculation details
- Results
- $D \pi: I=3 / 2$ (preliminary); $I=1 / 2$ (very preliminary)
- DK: $I=0$ (very preliminary); $I=1$ (very preliminary)
- Outlook

LATTICES FOR OPEN CHARM SCATTERING

described in detail in 1301.7670 and 1204.5425

- Symanzik-improved anisotropic gauge action with tree-level tadpole-improved coefficients and $N_{f}=2+1$
- Anisotropic clover action with stout-smeared spatial links
- $\xi=a_{s} / a_{t}=3.5$
- $a_{s} \approx 0.12 \mathrm{fm}, a_{t}^{-1}\left(m_{\Omega}\right)=5.67(4) \mathrm{GeV}$
- $20^{3}, 24^{3} \times 128$
- $m_{l} \sim 400 \mathrm{MeV}$
- distillation

HadSpec recipe for (single meson) spectroscopy

- a basis of local and non-local operators from distilled fields: \mathcal{O} of the form $\bar{\Psi}(\vec{x}, t) \Gamma D_{i} D_{j} \ldots \Psi(\vec{x}, t)$
- build a correlation matrix of two-point functions

$$
C_{i j}=\langle 0| \mathcal{O}_{i} \mathcal{O}_{j}^{\dagger}|0\rangle=\sum_{n} \frac{Z_{i}^{n} Z_{j}^{n \dagger}}{2 E_{n}} e^{-E_{n} t}
$$

- use a variational method - solve a generalised eigenvalue problem

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

this gives

- eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_{n} t}\left[1+O\left(e^{-\Delta E t}\right)\right]$ - principal correlator
- eigenvectors: related to overlaps $Z_{i}^{(n)}=\sqrt{2 E_{n}} e^{E_{n} t_{0} / 2} v_{j}^{(n) \dagger} C_{j i}\left(t_{0}\right)$
- use overlaps to assign each extracted level a continuum spin
- operators of definite $\exists^{P C}$ constructed in step 1 are subduced into the relevant irrep
- a subduced operator carries a "memory" of continuum spin 7 from which it was subduced - it overlaps predominantly with states of this 7 .

Open charm spectrum

Moir et al [JHEP 05 (2013) 021]

Clover anisotropic, relativistic charm;
$N_{f}=2+1,24^{3} \times 128, a_{s} \sim 0.12 \mathrm{fm}, M_{\pi} L \sim 6, M_{\pi} \approx 400 \mathrm{MeV}$

Meson scattering

- Finite box \Rightarrow discrete spectrum
- Lüscher: energy levels in finite volume give infinite volume scattering phase shift at E_{cm}
- Map out the phase shift to get resonance parameters:

$$
\sigma_{l}(E) \propto \sin ^{2} \delta_{l}(E)=(\Gamma / 2)^{2} /\left(\left(E-E_{R}\right)^{2}+(\Gamma / 2)^{2}\right)
$$

Meson scattering

- Finite box \Rightarrow discrete spectrum
- Lüscher: energy levels in finite volume give infinite volume scattering phase shift at E_{cm}
- Map out the phase shift to get resonance parameters:

$$
\sigma_{l}(E) \propto \sin ^{2} \delta_{l}(E)=(\Gamma / 2)^{2} /\left(\left(E-E_{R}\right)^{2}+(\Gamma / 2)^{2}\right)
$$

- many multi-hadron energy levels needed:
- single and multi-hadron operaters; non-zero P_{cm}, different box sizes (shapes), twisted bcs etc
- reduced symmetry means mixing between partial waves
1212.0830

Coupled channels

- Lüscher approach and extensions successfully used to extract elastic hadron-hadron scattering phase shifts
- Extensions for outside center-of-mass and above the inelastic thresholds proposed: He et al '05; Döring et al '11; Aoki et al '11; Briceno \& Davoudi '12; Hansen \& Sharpe '12
- 1211.0929, Guo et al: a practical strategy to extract scattering parameters of coupled-channel systems in moving center-of-mass frame
Results for $K \pi$ presented by D. Wilson [talk] and in 1406.4158

The operator construction for multi-mesons

- use distillation: redefinition of quark smearing
- operators of definite relative momentum at source and sink
- variational analysis of a matrix of correlators
- construct two-point correlators: $\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle$ with two classes of interpolating field $\mathcal{O}_{i}^{\dagger}$
- single-meson operators $\bar{\Psi} \Gamma \Psi$
- two-meson operators with definite relative and total momentum $(\vec{P}):\left(\bar{\Psi} \Gamma_{1} \Psi\right)_{\vec{p}_{1}}\left(\bar{\Psi} \Gamma_{2} \Psi\right)_{\vec{p}_{2}}$
[Thomas et al 1107.1930]
- $\vec{P}=\vec{p}_{1}+\vec{p}_{2}$ and $\vec{P}=[0,0,0],[0,0,1],[0,1,1],[1,1,1]$
- operators are variationally optimised
- all relevant Wick contractions included
- two volumes used here: $20^{3}(L \approx 2.4 \mathrm{fm}), 24^{3}(L \approx 2.9 \mathrm{fm})$

(Preliminary and Very Preliminary) Results

$D \pi(I=3 / 2)$ PHASE SHIFT

Preliminary

Update from Lattice 2013

- consider $l=0$ since at modest momenta $\delta_{0} \ll \delta_{2} \ll \delta_{4} \ldots$
- no resonance, weakly repulsive interaction

$D \pi:(I=1 / 2), \vec{P}=(0,0,0) \quad$ Very Preliminary

- 1 volume: $24^{3} ; D, D \pi, D \eta$ operators; A_{1} irrep

- additional threshold: $D_{s} \bar{K} \sim 0.44$

$D \pi:(I=1 / 2), \vec{P}=(0,0,1)$
 Very Preliminary

- $A_{1} P=(0,0,1)$

$D K(I=0) \vec{P}=(0,0,0)$
 Very Preliminary

- single-meson D_{s}, two-meson $D K$ operators; 2 volumes

non-interacting levels : $-D K-D_{s} \eta$
thresholds : $\cdots D K \cdots D_{s} \eta \cdots D_{s} \pi \pi$

Points:
$0^{+} ; 2^{+} ; 1^{-}$
$D K(I=0), \vec{P}=(0,0,1) \quad$ Very Preliminary

non-interacting levels : $-D K-D_{s} \eta$
thresholds: $\cdots D K \cdots D_{s} \eta \cdots D_{s} \pi \pi$

Points:
$0^{+} ; 2^{+} ; 1^{-}$

Summary and Outlook

- $D \pi$ phase shift for $I=3 / 2$ extracted: no resonance, weakly repulsive interaction
- Preliminary results for the spectrum extracted in $D \pi I=1 / 2$ and $D K I=0,1$.
- The extracted states are shifted away from the non-interacting levels and the shift can be determined with precision.
- $D \bar{K}$ also being studied.
- More irreps and statistics being accumulated.
- A coupled-channel analysis to extract scattering parameters is planned.

