Charmed and Strange Pseudoscalar Meson Decay Constants from HISQ Simulations

Presenter: Javad Komijani

Washington University St. Louis, USA

Fermilab Lattice and MILC Colaborations

A. Bazavov, C. Bernard, C. Bouchard, C. DeTar, D. Du, A.X. El-Khadra, J. Foley, E.D. Freeland, E. Gamiz, Steven Gottlieb, U.M. Heller, J. Kim, J. Komijani, A.S. Kronfeld, J. Laiho, L. Levkova, P.B. Mackenzie, E.T. Neil, J.N. Simone, R.L. Sugar, D. Toussaint, R.S. Van de Water, R. Zhou

- f_{D^+} , f_{D_s} and f_{K^+} , together with experimental leptonic decay rate determinations, provide precise determinations of $|V_{cd}|$, $|V_{cs}|$ and $|V_{us}|$.
- For higher precision than available with the asqtad action, we have moved to the HISQ action.
- Advantage of HISQ is that charm may be treated with same action as light quarks.
- MILC's HISQ ensembles include ones with physical value of quark masses reducing or eliminating errors from chiral extrapolation.

- After determination of meson masses and amplitudes for each pair of valence-quark masses, analysis follows two stages:
 - **1** The physical-mass ensembles allow for a simple analysis without ChPT
 - used to compute quark-mass ratios and f_{K^+}/f_{π^+} .
 - also compute intermediate scale setting quantity F_{p4s} (the decay constant when valence masses are 0.4m^{phys}_s and the sea masses are physical) and corresponding meson mass M_{p4s}.
 - Analyze heavy-light decay constants on all ensembles (physical and unphysical mass) using ChPT.
 - reduces statistical error.
 - more control of continuum extrapolation.
 - uses quark mass ratios, F_{p4s} and F_{p4s}/M_{p4s} from stage one.

Ensembles Used

- 21 ensembles are used.
- $\bullet~$ 14 ensembles have m_s tuned close to its physical value.

β	m_l^\prime/m_s^\prime	size	N_{lats}	$\approx a \text{ (fm)}$	L (fm)	$M_{\pi}L$	$M_{\pi}(MeV)$
5.80	1/5	$16^3 \times 48$	1020	0.15	2.38	3.8	314
5.80	1/10	$24^3 \times 48$	1000	0.15	3.67	4.0	214
5.80	1/27	$32^3 \times 48$	1000	0.15	4.83	3.2	130
6.00	1/5	$24^3 \times 64$	1040	0.12	3.00	4.5	299
6.00	1/10	$24^3 \times 64$	1020	0.12	2.89	3.2	221
6.00	1/10	$32^3 \times 64$	1000	0.12	3.93	4.3	216
6.00	1/10	$40^3 \times 64$	1028	0.12	4.95	5.4	214
6.00	1/27	$48^3 \times 64$	999	0.12	5.82	3.9	133
6.30	1/5	$32^3 \times 96$	1011	0.09	2.95	4.5	301
6.30	1/10	$48^3 \times 96$	1000	0.09	4.33	4.7	215
6.30	1/27	$64^3 \times 96$	1031	0.09	5.62	3.7	130
6.72	1/5	$48^{3} \times 144$	1016	0.06	2.94	4.5	304
6.72	1/10	$64^3 \times 144$	1166	0.06	3.79	4.3	224
6.72	1/27	$96^3 \times 192$	583*	0.06	5.44	3.7	135

J. Komijani (W.U.)

 f_{D+}, f_{D_S} and f_{K+}

Valence Masses for Charmed Decay Constant

- $\bullet\,$ For light quark, about 10 masses ranging from m_l' to m_s'
- For heavy quark, 2 masses close to the charm quark mass

β	m_l'/m_s'	light masses	heavy masses
		$(m_{ m v}/m_s')$	(m_Q/m_c')
5.80	1/5	0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
5.80	1/10	0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
5.80	1/27	0.036,0.07,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.00	1/5	0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.00	1/10	0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.00	1/10	0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.00	1/10	0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.00	1/27	0.036,0.073,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.30	1/5	0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.30	1/10	0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.30	1/27	0.033,0.066,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.72	1/5	0.05,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.72	1/10	0.05,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0
6.72	1/27	0.036,0.068,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0	0.9,1.0

Lattice Spacing and Valence Quark Mass Tuning

- Illustration of the lattice spacing and valence quark mass tuning
- Upper panels: f_π, M_π and M_K are used to fix a, m_l and m_s
- Similarly m_c is fixed from M_{D_s}
- m_u/m_d comes from M_{K^+} and M_{K^0} (with inputs from our EM project)
- Lower Panel: determinations of f_{K^+} , f_{D^+} and f_{D_s} .
- Doing the whole procedure inside a jackknife resampling gives the statistical errors

Extrapolation to Continuum

- Black and red solid lines are from fits that only include physical mass ensembles.
- Solid blue line is from fit that also includes blue squares for the physical light quark mass.
- Dotted blue line is from same fit, but for heavier sea-quark mass corresponding to blue squares. ($m_l'/m_s'=0.1.$)

Results of Stage One (Preliminary)

• Results for f_{K^+}/f_{π^+} and quark mass ratios:

$$f_{K^+}/f_{\pi^+} = 1.1956(10)_{\text{stat}} \stackrel{+23}{}_{-14}^{-1}|_{a^2} \stackrel{\text{extrap}}{}_{\text{extrap}}(10)_{\text{FV}}(5)_{\text{EM}}$$

$$m_s/m_l = 27.352(51)_{\text{stat}} \stackrel{+80}{}_{-20}|_{a^2} \stackrel{\text{extrap}}{}_{\text{extrap}}(39)_{\text{FV}}(55)_{\text{EM}}$$

$$m_c/m_s = 11.747(19)_{\text{stat}} \stackrel{+52}{}_{-32}^{-1}|_{a^2} \stackrel{\text{extrap}}{}_{\text{extrap}}(6)_{\text{FV}}(27)_{\text{EM}}$$

• And intermediate scale setting quantities:

$$\begin{split} F_{p4s} &= 153.9(9)_{\text{stat}} \frac{^{+14}_{-23}}{_{a^2 \text{ extrap}}} (15)_{\text{FV}}(5)_{\text{EM}} \\ M_{p4s} &= 433.24(17)_{\text{stat}} \frac{^{+1}_{-33}}{_{a^3}} |_{a^2 \text{ extrap}} (2)_{\text{FV}} (43)_{\text{EM}} \\ R_{p4s} &\equiv F_{p4s}/M_{p4s} = 0.35527(24)_{\text{stat}} \frac{^{+52}_{-15}}{_{-15}} |_{a^2 \text{ extrap}} (30)_{\text{FV}} (24)_{\text{EM}} \end{split}$$

- Finite Volume error comes from the FV error in f_{π} which in turn comes from ChPT. [*A. Bazavov et al. PRD* **110**, *172003 (2013)*]
- EM error is from the residual error in our tuned values of quark masses. Uses input $\epsilon = 0.84(21)$ (ϵ characterizes violations of Dashen's theorem) from MILC EM project. (See talk by C. Bernard, Friday, 2:35 P.M., Pupin 428.)

- Relative lattice scales are determined by F_{p4s}
- Has very small statistical errors, so the mistuning in sea quark masses can be important.
- So we adjust the data for mistunings in order to have a precise calculation of aF_{p4s} and am_{p4s} .
- Absolute scale comes from value of F_{p4s} in physical units (from stage one) which comes ultimately from f_{π} .

Adjustment for Mistuning in Sea Quark Masses

- Light sea masses of the ensembles available at a = 0.12 fm
- Three ensembles inside the red ellipse are used to calculate m_l derivatives
- Five ensembles inside the blue ellipse are used to calculate m_s derivatives
- We calculate m_c derivatives by taking advantage of the ensembles mistuned by $\sim 10\%$ in their sea charm masses
- These derivatives are used to adjust data for mistunings before calculating aF_{p4s} and am_{p4s}

Using the decoupling theorem, we can calculate effects of mistuning in the charm mass analytically; result is in reasonable agreement with our numerical procedure.

Charmed Decay Constant Data

Data for unphysical m_s ensembles (and multiple volumes) not shown, but included in fits. [366 data points total.]

J. Komijani (W.U.)

Central Chiral Fit

Fit to chiral form for all-staggered heavy-light mesons worked out in *C. Bernard and J. K.*, *PRD* **88**, 094017 (2013)

J. Komijani (W.U.)

 f_{D+}, f_{D_S} and f_{K+}

Central Chiral Fit

- Orange band: valence and sea light masses are equal, up to small difference between m_d and m_l .
- Black burst shows Cont. Extrap. result for Φ_{D^+}
- Error in continuum band is statistical (from fit only).

Our final statistical error is obtained using jackknife analysis, *i.e.*, includes the statistical error coming from inputs to the fit.

J. Komijani (W.U.)

For continuum extrapolation/chiral interpolation errors, use two methods:

- By straightforward comparison with various continuum extrapolations of physical-mass ensemble results.
- Self-contained error analysis:
 - Have 18 acceptable chiral fits (p > 0.1), which:
 - keep or drop $a=0.15\ {\rm fm}$ ensembles.
 - add or drop higher order terms. (Number of fit parameters ranging from 23 to 28.)
 - constrain higher order chiral terms and/or discretization terms with priors, or leave them unconstrained.
 - determine relative value of the strong coupling α_S for discretization terms from measured light-light pseudoscalar taste splittings, or determine it from plaquette.
 - various ways of fixing or determining the LECs f, g_{π} and B.
 - Have 6 versions of inputs (quark masses, F_{p4s} in physical units from f_{π} and R_{p4s}) from physical-mass ensemble results.
 - Histogram results of 108 composite analyses.

- The central fit is chosen deliberately to be near the centers of the histograms.
- We include the results of physical-mass ensemble analyses, performed in stage one; red bars.
- Conservatively we take the full difference as the systematic error of extrapolation to the continuum.

Results:

$$\begin{split} f_{D^+} &= 212.6 \pm 0.4_{\text{stat}} \stackrel{+0.9}{_{-1.1}}|_{a^2 \text{ extrap}} \pm 0.3_{\text{FV}} \pm 0.1_{\text{EM}} \pm 0.3_{f_{\pi} \text{ PDG}} \text{ MeV} \\ f_{D_s} &= 249.0 \pm 0.3_{\text{stat}} \stackrel{+1.0}{_{-1.4}}|_{a^2 \text{ extrap}} \pm 0.2_{\text{FV}} \pm 0.1_{\text{EM}} \pm 0.4_{f_{\pi} \text{ PDG}} \text{ MeV} \\ f_{D_s}/f_{D^+} &= 1.1712(10)_{\text{stat}} (\stackrel{+28}{_{-31}})_{a^2 \text{ extrap}} (3)_{\text{FV}} (6)_{\text{EM}} \end{split}$$

• Repeating the result for f_{K^+}/f_{π^+} and quark mass ratios from the physical-ensemble analysis (stage one):

$$\begin{aligned} f_{K^+}/f_{\pi^+} &= 1.1956(10)_{\text{stat}} \, {}^{+23}_{-14}|_{a^2 \, \text{extrap}}(10)_{\text{FV}}(5)_{\text{EM}} \\ m_s/m_l &= 27.352(51)_{\text{stat}} \, {}^{+20}_{-20}|_{a^2 \, \text{extrap}}(39)_{\text{FV}}(55)_{\text{EM}} \\ m_c/m_s &= 11.747(19)_{\text{stat}} \, {}^{+52}_{-32}|_{a^2 \, \text{extrap}}(6)_{\text{FV}}(27)_{\text{EM}} \end{aligned}$$

Comparison to Previous Work

Unitarity Tests of the CKM Matrix (Preliminary)

First row

$$\frac{|V_{us}|}{|V_{ud}|} = 0.23081(29)_{\mathrm{BR}(K_{\ell 2})}(21)_{\mathrm{EM}}(52)_{\mathrm{LQCD}}$$

Taking $|V_{ud}|$ from nuclear β decay, we obtain

$$|V_{us}| = 0.22487(29)_{BR(K_{\ell 2})}(20)_{EM}(51)_{LQCD}(5)_{V_{ud}}$$

Second row

 $\begin{aligned} |V_{cd}| &= 0.217(5)_{\rm expt}(1)_{\rm LQCD}(1)_{\rm EM} \\ |V_{cs}| &= 1.010(18)_{\rm expt}(5)_{\rm LQCD}(6)_{\rm EM} \end{aligned}$

Errors for $|V_{cd}|$ and $|V_{cs}|$ are mostly from experiment

EM errors are from hadronic structure-dependent EM effects (from matching of QCD+QED to QCD).

Thank You for Your Attention!

Finite Volume Effects

