Extending the QUDA library with the eigCG solver

Alexei Strelchenko

Scientific Computing Division @ Fermilab

Lattice 2014, Columbia University, June 23

A. Strelchenko

Extending the QUDA library with the eigCG solver

Lattice 2014 1/24

- The Incremental eigCG
- Implementation details
- Numerical experiments
- Conclusion

The eigCG(k, m) algorithm

A. Stathopoulos and K. Orginos, SIAM J.Sci.Comput. 32 (2010) 439-462

0
$$i = 0; V^m = []; r_0 = b - A x_0; //search vectors and residual
1 for $j = 0, 1, ...$ untill $||r_j||/||r_0|| < tol:$
2 Inside standard CG iteration:
3 update the Lancz. matrix T_m and the Lancz. vector V_i^m
4 if $i == m$: restart $V^{(2k)}$, set $i = 2 * nev$
5 $i = i + 1$
6 Update residual and solution
7 end for$$

Eigenvector computing in eigCG

e.g.: A. Knyazev, SIAM J.Sci.Comput. 23 (2001) 517-541

Given
$$V^m$$
 and $T_m = V^{m\dagger}AV^m$ and $T_{m-1} = V^{m-1\dagger}AV^{m-1}$:

1 Solve for lowest k eigenpaires: $T_m u_i = \lambda_i u_i$, $T_{m-1}\bar{u}_i = \bar{\lambda}_i \bar{u}_i$ 2 Orthogonalize \bar{U} against U: $Q = orth[U, \bar{U}]$ 3 Set $H = Q^{\dagger}T_mQ$ and solve: $H z_j = \mu_j z_j$ 4 Compute 2k Ritz vectors: $y_j = V^m Q z_j$ 5 Restart V^{2k} : $V^{2k} = [y_1, ..., y_{2k}]$ 6 Rebuild T_m

Improving eigenvec. accuracy: the Incremental eigCG

A. Stathopoulos and K. Orginos, SIAM J.Sci.Comput. 32 (2010) 439-462

1
$$U = [], H = []$$
 //accum. Ritz vectors
2 **for** $s = 1, ..., s_1$: //for s_1 RHS
3 $x_0 = UH^{-1}U^H b_s$ //Galerkin proj.
4 $[x_i, V, H] = eigCG(nev, m, A, x_0, b_i)$ //eigCG part
5 \bar{V} = orthogonalize V against U //(not strictly needed)
6 $[U, H] =$ RayleighRitz $[U, \bar{V}]$
7 **end for**

Incremental phase

For the first s_1 RHS: call eigCG(k, m) solver, add k eigenvectors to a separate subspace after each RHS.

Init-CG phase

For all subsequent RHS (i.e., $s > s_1$): apply Galerkin oblique projection to deflate an initial guess with Ritz vectors generated by the Incremental eigCG, then call standard CG.

eigCG(nev, m) implementation in the QUDA library

```
create an eigenvector set: V = [0:m]
start CG iterations
an extra iteration index: i = 0
load the Lanczos vectors: V[i] \leftarrow r_i / ||r_i||
construct the Lanczos matrix: T_m
if i = m:
  apply RR on T_m, T_{m-1} \to Y_m, Y_{m-1} (nev lowest eigenpairs)
  QR factorize Y_m, Y_{m-1}, \rightarrow Q = \operatorname{orth}[Y_m, Y_{m-1}]
  set H = O^{\dagger}T_mO and apply RR on H: HZ = Z\Lambda
  restart V: V = V(QZ)
  reset i = 2 * nev and rebuild T_m
end if
```

continue CG iterations until the next restart (m - 2nev iters)

- Main requirement is to keep QUDA functionality:
 - ▶ application of D
 - blas operations provided by QUDA
- Added extra attributes and members in spinor field classes:
 - ColorSpinorParam
 - ColorSpinorField
 - cudaColorSpinorField
- Allows to work with both the whole eigenvector set and individual eigenvectors

Eigenvectors in QUDA: cont.

```
class ColorSpinorParam : public LatticeFieldParam {
```

```
int spinorset_dim;
int spinorset_id;
```

```
};
```

```
class ColorSpinorField : public ColorSpinorParam {
```

```
...
int spinorset_dim;
int spinorset_id;
int spinorset_volume;
...
std::vector<ColorSpinorField*> spinorset;
...
```

```
class ColorSpinorField : public ColorSpinorParam {
```

 ${\tt cudaColorSpinorField\&\ SpinorsetItem(const\ int\ idx)\ const;}$

};

};

Eigenvectors in QUDA: cont.

• To create an eigenvector set:

```
cudaParam.create = QUDA\_ZERO\_FIELD\_CREATE;
```

cudaParam.spinorset_dim = m;

```
\mathsf{cudaColorSpinorField} \ \texttt{`evects} = \mathsf{new} \ \mathsf{cudaColorSpinorField}(\mathsf{cudaParam}); \ \ldots
```

• To work with an individual eigenvector:

```
DiracMdagM m(dirac);
```

```
m(..., evects→SpinorsetItem(i), ...);
```

. . .

 $cDotProductCuda(evect \rightarrow SpinorsetItem(i), evect \rightarrow SpinorsetItem(j));$

LA routines for the eigCG solver

- currently relies on MAGMA GPU library:
 - highly optimized lapack-like routines, magma_zgeqrf_gpu(...), magma_zunmqr(...), etc.
 - but no multi-process support

What kind of LA operations do we need?

• RR block:

 $\begin{array}{ll} \text{if } i == m: \\ 1. \quad T_m Y = Y\Lambda, \quad T_{m-1}\bar{Y} = \bar{Y}\bar{\Lambda} \text{ (at most }m\text{-dim eigenproblem)} \\ 2. \quad Q = \text{orth}[Y,\bar{Y}] & (2*nev \text{ }m\text{-component vectors)} \\ 3. \quad H = Q^{\dagger}T_mQ & (2nev \times 2nev \text{ }output \text{ }matrix) \\ 4. \quad HZ = Z\Lambda & (2nev\text{-dim eigenproblem}) \\ 5. \quad Q = (QZ) & (m \times 2nev \text{ }output \text{ }matrix) \\ 6. \quad V = VQ & (\text{here we need multi-gpu!}) \\ \text{endif} \end{array}$

What kind of LA operations do we need? cont.

• RR block:

NVIDIA Kepler anatomy

K110B micro-architecture highlights (Tesla K40m)

- $\bullet~$ 12GB RAM, BW up to 288GB/s
- 15 SMX units, 2880 cores (192 per SMX)
- $P_{theor.} = 1.43/4.29GFlops$
- Dynamic parallelism, Hyper-Q, GPUdirect

Increased memory size \rightarrow very essential for the deflated solvers!

Lattice setup

- Twisted mass fermion action
- Lattice volume: $24^3 \times 48$
- Two configurations:
 - $\kappa = 0.161231, \mu = 0.0085$
 - $\kappa = 0.163270, \mu = 0.0040$
- eigCG parameters: nev = 8, m = 128, $tol = 10^{-10}$, $tol_{rest} = 5e^{-7}$
- Used 4-GPU K40m node @ JLAB and 2-GPU K40m node @ FNAL

The degenerate twisted mass fermions, $\kappa = 0.163270, \mu = 0.0040$

InitCG double-single mixed precision

A. Strelchenko

The degenerate twisted mass fermions, $\kappa = 0.163270, \mu = 0.0040$

InitCG double-half mixed precision

A. Strelchenko

The degenerate twisted mass fermions, $\kappa = 0.161231, \mu = 0.0085$

InitCG double-single mixed precision

Extending the QUDA library with the eigCG solver

Lattice 2014 18/24

The degenerate twisted mass fermions, $\kappa = 0.161231, \mu = 0.0085$

InitCG double-half mixed precision

A. Strelchenko

Eigenvectors accuracy

The degenerate twisted mass fermions, $\kappa = 0.163270$, $\mu = 0.0040$

Extending the QUDA library with the eigCG solver

Eigenvector accuracy

The degenerate twisted mass fermions, $\kappa = 0.161231, \mu = 0.0085$

Extending the QUDA library with the eigCG solver

Lattice 2014 21/24

Incremental eigCG: performance summary

- Typical timings for the incremental stage ($\kappa = 0.163270, \mu = 0.0040$):
 - ▶ [44.4, 42.6, 39.6, 29.3, 27.9, 24.7, 23.5, 21.7, 20.9, 19.8, 16.8, 15.1, ...]
- Average DS CG exec. time:
 - non-deflated CG: 15 secs
 - deflated CG: 2.42 secs
- Average DH CG exec. time:
 - non-deflated CG: does not converge
 - deflated CG: 1.84 secs

Deflated CG : need for restarting

No restart

Restart

- Incremental eigCG efficiency:
 - \blacktriangleright $\times 8$ speedup in terms of iterations
 - \blacktriangleright $\times 8$ speedup in execution time for initCG stage
 - requires relaible updates with Reighley-Ritz for eigCG stage
- Future work:
 - eigBiCGstab
 - GMRES-DR