Low lying charmonium states at the physical point

Daniel Mohler

New York, June 23, 2014

‡ Fermilab

For the Fermilab Lattice and MILC collaborations C. DeTar, A. Kronfeld, Song-Haeng Lee, L. Levkova, D. Mohler, J. Simone

∃ → 4

Low-lying charmonium: A precision benchmark

- Well understood from potential models
- Well determined in experiment
- Spin-dependent mass splittings extremely sensitive to the charm-quark mass and heavy-quark discretization

meson	mass	width	
η_{c}	2983.7(7)	32.0(9)MeV	
J/Ψ	3096.916(11)	92.9(2.8)keV	
<i>χc</i> 0	3414.75(31)	10.3(6)MeV	
<i>χ</i> c1	3510.66(3)	0.86(5)MeV	
χс2	3556.20(9)	1.97(11)MeV	
h _c	3525.38(11)	0.7(4)MeV	

Charmonium mass splittings

We use the Fermilab method for the charm quark

```
El-Khadra et al., PRD 55, 3933 (1997)
```

- *m_c* tuned by demanding the *D_s* meson kinetic mass to be physical
- We quote splittings among charmonium states

$$egin{aligned} \Delta M_{HF} &= M_{n^3L} - M_{n^1L} \ \Delta M_{1P1S} &= M_{\overline{1P}} - M_{\overline{1S}} \ \Delta M_{Spin-Orbit} &= (5M_{\chi_{c2}} - 3M_{\chi_{c1}} - 2M_{\chi_{c0}})/9 \ \Delta M_{Tensor} &= (3M_{\chi_{c1}} - M_{\chi_{c2}} - 2M_{\chi_{c0}})/9 \end{aligned}$$

with

$$M_{\overline{1P}} = (M_{\chi_{c0}} + 3M_{\chi_{c1}} + 5M_{\chi_{c2}})/9$$

 $M_{\overline{1S}} = (M_{\eta_c} + 3M_{J/\Psi})/4$

A 3 > A 3

MILC asqtad ensembles used for charmonium

pprox a [fm]	m _l /m _h	size	# of sources	κc	ĸsim
0.14	0.2	$16^3 imes 48$	2524	0.12237	0.1221
0.14	0.1	$20^3 imes 48$	2416	0.12423	0.12423
0.114	0.2	$20^3 imes 64$	4800	0.12722	0.12722
0.114	0.1	$24^3 imes 64$	3328	0.12960	0.1298
0.082	0.2	$28^3 imes 96$	1904	0.130921	0.1310
0.082	0.1	$40^3 imes 96$	4060	0.12231	0.1221
0.058	0.2	$48^3 \times 144$	2604	0.12423	0.1245
0.058	0.1	$64^3 imes 144$	1984	0.12714	0.12714
0.043	0.2	$64^3 imes 192$	3204	0.12955	0.1296

- 5 lattice spacings with two different light sea-quark masses
 → Controlled extrapolation to the chiral-continuum limit
- 4 source time slices per gauge configuration
- Follows previous efforts

T. Burch et al. PRD 81 034508, 2010

Disconnected contributions are omitted

Interpolator basis and fit methodology

- Large correlator matrix from smeared stochastic wall sources
- Variational method

$$egin{split} \mathcal{C}(t)ec{\psi}^{(k)} &= \lambda^{(k)}(t)\mathcal{C}(t_0)ec{\psi}^{(k)} \ \lambda^{(k)}(t) \propto \mathrm{e}^{-t\mathcal{E}_k}\left(1+\mathcal{O}\left(\mathrm{e}^{-t\Delta \mathcal{E}_k}
ight)
ight) \end{split}$$

Michael Nucl. Phys. B259, 58 (1985) Lüscher and Wolff Nucl. Phys. B339, 222 (1990) Blossier et al. JHEP 04, 094 (2009)

- (multi)exponential fits to the eigenvalues in [t_{min}, t_{max}]
- Keep t₀ and t_{min} approximately constant in fm across ensembles
- Pick *t_{max}* such that eigenvectors remain stable
- Correct data for unphysical κ_c where needed

Chiral and continuum fits

- Clear sea-quark mass dependence for some observables
- We need to take into account unphysical sea-quark masses
- Fit model

$$M = M_0 + c_1(2x_l + x_h) + c_2f_1(a) + c_3f_2(a) + \dots$$
$$x_l = \frac{m_{ud,sea} - m_{ud,phys}}{m_{s,phys}}$$
$$x_h = \frac{m_{s,sea} - m_{s,phys}}{m_{s,phys}}$$

For the lattice spacing dependence

- 2-3 functions with shape estimated from expected cutoff effects
- Set fit priors to twice the expected magnitude centered around 0
- For comparison: Fits with just the leading shape and no prior

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Qualitatively, we expect errors of order a^2 and $\alpha_s a$ for quarkonium
- Most of these are worked out in Oktay and Kronfeld PRD 78 014504, 2008 using NRQCD power counting
- $\bullet~\text{Use}~\nu^2=0.3$ and $m\nu^2\approx420\text{MeV}\approx1\text{P1S}$ splitting for charm
- We consider the leading two contributions arising at either v⁴ or v⁶
- Shapes take into account tree level mismatches as derived in OK-action paper
- For the 1*P*1*S*-splitting, allow for a term from rotational symmetry breaking (*w*₄ term)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Discretization uncertainties II

Expected shape of discretization uncertainties ($c_i = 1 \forall i$)

Daniel Mohler (Fermilab)

The 1S hyperfine splitting

- Curves for physical (black), 0.1 m_s, and 0.2 m_s light-quark masses
- Including subleading effects significantly enlarges the uncertainty
- Significant autocorrelatations on some ensembles
- Significant contribution from disconnected diagrams expected

Levkova and DeTar, PRD 83 074504, 2011

The S-wave P-wave splitting

- Effects from unphysical strange quarks clearly visible
- Fits are stable with regard to the number of shapes

• • • • • • • • • • • •

The P-wave spin-orbit splitting

Small discretization uncertainties

< A

The P-wave Tensor splitting

Significant uncertainty from the choice of fit model

Daniel Mohler (Fermilab)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The P-wave hyperfine splitting

- Expected to be very small
- Data still preliminary!

Preliminary comparison to experiment

- Errors include statistics, chiral and continuum extrapolations
- Not yet included: Scale-setting uncertainty (significant for ΔM_{HF} and ΔM_{1P1S})
- Second uncertainty on the 1S hyperfine splitting is best-estimate for disconnected contributions
- Volume effects are expected to be negligible

Mass difference	This analysis [MeV]	Experiment [MeV]	
1P1S	457.3 ± 3.6	457.5 ± 0.3	
1S hyperfine	$118.1 \pm 2.1^{-1.5}_{-4.0}$	113.2 ± 0.7	
1P spin-orbit	49.5 ± 2.5	$\textbf{46.6} \pm \textbf{0.1}$	
1P tensor	17.3 ± 2.9	16.25 ± 0.07	
1P hyperfine	-6.2 ± 4.1	-0.10 ± 0.22	

Thank you!

Daniel Mohler (Fermilab)

Low lying charmonium

New York, June 23, 2014 15/15

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶