Electromagnetic matrix elements for excited Nucleons

Benjamin Owen

Waseem Kamleh, Derek Leinweber, Selim Mahbub, Benjamin Menadue

The 32nd International Symposium on Lattice Field Theory
June 26th, 2014
Outline

1. Correlation Matrix Techniques
2. Calculation Details
3. Results
 - Excited State Spectrum
 - Form Factor extraction
 - Quark Sector Results
A systematic framework for generating ideal operators for Hamiltonian Eigenstates
A systematic framework for generating ideal operators for Hamiltonian Eigenstates

Require a basis of operators: \(\{ \chi_i \} ; \ i \in [1, N] \)
A systematic framework for generating ideal operators for Hamiltonian Eigenstates

Require a basis of operators: \(\{ \chi_i \} \); \(i \in [1, N] \)

Calculate set of cross-correlation functions

\[
G_{ij}(t, \vec{p}; \Gamma) = \sum_{\vec{x}} e^{-i\vec{p} \cdot \vec{x}} \text{tr}(\Gamma \langle \Omega | \chi_i(x) \chi_j(0) | \Omega \rangle)
\]

\[
= \sum_{\alpha} e^{-E_\alpha(\vec{p}) t} Z_i^\alpha(\vec{p}) \bar{Z}_j^\alpha(\vec{p}) \text{tr} \left(\frac{\Gamma (\vec{p} + m_\alpha)}{2E_\alpha(\vec{p})} \right)
\]

where \(Z_i^\alpha \), \(\bar{Z}_j^\alpha \) are the couplings of sink operator \((\chi_i) \) and source operator \((\bar{\chi}_j) \) to the state \(\alpha \)
CM Analysis (cont)

- Desire N optimised sink (ϕ_α) and source ($\bar{\phi}_\alpha$) operators
Desire N optimised sink (ϕ_α) and source ($\bar{\phi}_\alpha$) operators

Ideally, we want these operators to satisfy

$$\langle \Omega | \phi_\beta | M_\alpha, p, s \rangle = \delta_{\alpha\beta} \mathcal{Z}^\alpha(p) \sqrt{\frac{M_\alpha}{E_\alpha(p)}} u(p, s)$$
Desire N optimised sink (ϕ_α) and source ($\bar{\phi}_\alpha$) operators

Ideally, we want these operators to satisfy

$$\langle \Omega | \phi_\beta | M_\alpha, p, s \rangle = \delta_{\alpha \beta} Z^\alpha(\vec{p}) \sqrt{\frac{M_\alpha}{E_\alpha(\vec{p})}} u(p, s)$$

use our basis of operators to construct these new operators

$$\bar{\phi}_\alpha(x, \vec{p}) = \sum_{i=1}^{N} u_i^\alpha(\vec{p}) \bar{\chi}_i(x)$$

$$\phi_\alpha(x, \vec{p}) = \sum_{i=1}^{N} v_i^\alpha(\vec{p}) \chi_i(x)$$

optimal coupling to state $| M_\alpha, p, s \rangle$
Knowledge of the time dependence provides the recurrence relation

\[G_{ij}(t + \delta t, \vec{p}; \Gamma) u_j^\alpha = e^{-E_\alpha(\vec{p}) \delta t} G_{ij}(t, \vec{p}; \Gamma) u_j^\alpha \]
Knowledge of the time dependence provides the recurrence relation

\[G_{ij}(t + \delta t, \vec{p}'; \Gamma) u_j^\alpha = e^{-E_\alpha(\vec{p}) \delta t} G_{ij}(t, \vec{p}; \Gamma) u_j^\alpha \]

Thus, the desired values for \(u_j^\alpha \) and \(v_i^\alpha \) are given by
CM Analysis (cont)

Knowledge of the time dependence provides the recurrence relation

\[G_{ij}(t + \delta t, \vec{p}; \Gamma) u_j^\alpha = e^{-E_{\alpha}(\vec{p}) \delta t} G_{ij}(t, \vec{p}; \Gamma) u_j^\alpha \]

Thus, the desired values for \(u_j^\alpha \) and \(v_i^\alpha \) are given by

CM Eigenvalue Equation

\[
\begin{align*}
\left[G^{-1}(t_0, \vec{p}; \Gamma) G(t_0 + \delta t, \vec{p}; \Gamma) \right]_{ij} u_j^\alpha(\vec{p}) &= e^{-E_{\alpha}(\vec{p}) \delta t} u_j^\alpha(\vec{p}) \\
v_i^\alpha(\vec{p}) \left[G(t_0 + \delta t, \vec{p}; \Gamma) G^{-1}(t_0, \vec{p}; \Gamma) \right]_{ij} &= e^{-E_{\alpha}(\vec{p}) \delta t} v_i^\alpha(\vec{p})
\end{align*}
\]
Knowledge of the time dependence provides the recurrence relation

\[G_{ij}(t + \delta t, \vec{p}^*; \Gamma) u_j^\alpha = e^{-E^\alpha(\vec{p})\delta t} G_{ij}(t, \vec{p}^*; \Gamma) u_j^\alpha \]

Thus, the desired values for \(u_j^\alpha \) and \(v_i^\alpha \) are given by

\[
\begin{align*}
[G^{-1}(t_0, \vec{p}; \Gamma) G(t_0 + \delta t, \vec{p}; \Gamma)]_{ij} u_j^\alpha(\vec{p}) &= e^{-E^\alpha(\vec{p})\delta t} u_j^\alpha(\vec{p}) \\
v_i^\alpha(\vec{p}) [G(t_0 + \delta t, \vec{p}; \Gamma) G^{-1}(t_0, \vec{p}; \Gamma)]_{ij} &= e^{-E^\alpha(\vec{p})\delta t} v_i^\alpha(\vec{p})
\end{align*}
\]

Using \(v_i^\alpha(\vec{p}) \), \(u_j^\alpha(\vec{p}) \) we are able to project out the correlation function for the state \(| M_\alpha, p, s \rangle \)

\[G_\alpha(t, \vec{p}; \Gamma) = v_i^\alpha(\vec{p}) G_{ij}(t, \vec{p}; \Gamma) u_j^\alpha(\vec{p}) \]
CM Analysis for 3pt-functions

- The eigenvectors derived from the two-point analysis can be used to project out the three-point function
The eigenvectors derived from the two-point analysis can be used to project out the three-point function. The key is to ensure that the eigenvector corresponds to the momentum to be projected at the source / sink:

\[G^\alpha(\vec{p}', \vec{p}; t_2, t_1; \Gamma') = v_i^\alpha(\vec{p}') G_{ij}(\vec{p}', \vec{p}; t_2, t_1; \Gamma') u_j^\alpha(\vec{p}) . \]
CM Analysis for 3pt-functions

- The eigenvectors derived from the two-point analysis can be used to project out the three-point function.
- The key is to ensure that the eigenvector corresponds to the momentum to be projected at the source / sink.

\[
G^\alpha(\vec{p}', \vec{p}; t_2, t_1; \Gamma') = v_i^\alpha(\vec{p}') G_{ij}(\vec{p}', \vec{p}; t_2, t_1; \Gamma') u_j^\alpha(\vec{p}) .
\]

- With the desired state now isolated, one simply uses the projected correlation functions in the ratio to extract the matrix element.
CM Analysis for 3pt-functions

- The eigenvectors derived from the two-point analysis can be used to project out the three-point function
- The key is to ensure that the eigenvector corresponds to the momentum to be projected at the source / sink

\[G^\alpha(\vec{p}', \vec{p}; t_2, t_1; \Gamma') = v^\alpha_i(\vec{p}') G_{ij}(\vec{p}', \vec{p}; t_2, t_1; \Gamma') u^\alpha_j(\vec{p}) \, . \]

- With the desired state now isolated, one simply uses the projected correlation functions in the ratio to extract the matrix element.
- In this work we have used the following ratio,

\[R^\alpha(\vec{p}', \vec{p}; \Gamma', \Gamma) = \sqrt{\frac{G^\alpha(\vec{p}', \vec{p}; t_2, t_1; \Gamma') G^\alpha(\vec{p}, \vec{p}'; t_2, t_1; \Gamma')}{G^\alpha(\vec{p}, t_2; \Gamma') G^\alpha(\vec{p}', t_2; \Gamma')}} \, . \]
Our operator basis

- It is important to use a basis that has good overlap with the states of interest

Table: The rms radii for the various levels of smearing considered in this work.

<table>
<thead>
<tr>
<th>Sweeps of smearing</th>
<th>rms radius (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.216</td>
</tr>
<tr>
<td>35</td>
<td>0.319</td>
</tr>
<tr>
<td>100</td>
<td>0.539</td>
</tr>
<tr>
<td>200</td>
<td>0.778</td>
</tr>
</tbody>
</table>
Our operator basis

- It is important to use a basis that has good overlap with the states of interest
- We choose to local operators of varying source and sink widths

Table: The rms radii for the various levels of smearing considered in this work.

<table>
<thead>
<tr>
<th>Sweeps of smearing</th>
<th>rms radius (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.216</td>
</tr>
<tr>
<td>35</td>
<td>0.319</td>
</tr>
<tr>
<td>100</td>
<td>0.539</td>
</tr>
<tr>
<td>200</td>
<td>0.778</td>
</tr>
</tbody>
</table>

Benjamin Owen (Adelaide Uni)
June 26th, 2014 7 / 39
Our operator basis

- It is important to use a basis that has good overlap with the states of interest
- We choose to local operators of varying source and sink widths
- Use of varying widths allows us to separate radial excitations

Table: The rms radii for the various levels of smearing considered in this work.

<table>
<thead>
<tr>
<th>Sweeps of smearing</th>
<th>rms radius (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.216</td>
</tr>
<tr>
<td>35</td>
<td>0.319</td>
</tr>
<tr>
<td>100</td>
<td>0.539</td>
</tr>
<tr>
<td>200</td>
<td>0.778</td>
</tr>
</tbody>
</table>

Benjamin Owen (Adelaide Uni)
Our operator basis

- It is important to use a basis that has good overlap with the states of interest
- We choose to local operators of varying source and sink widths
- Use of varying widths allows us to separate radial excitations
- Multi-particle states couple poorly, but through mixing of eigenstates they are still present in the correlator

\[\alpha = 0.7 \]

Table: The rms radii for the various levels of smearing considered in this work.

<table>
<thead>
<tr>
<th>Sweeps of smearing</th>
<th>rms radius (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.216</td>
</tr>
<tr>
<td>35</td>
<td>0.319</td>
</tr>
<tr>
<td>100</td>
<td>0.539</td>
</tr>
<tr>
<td>200</td>
<td>0.778</td>
</tr>
</tbody>
</table>
Our operator basis

- It is important to use a basis that has good overlap with the states of interest
- We choose to local operators of varying source and sink widths
- Use of varying widths allows us to separate radial excitations
- Multi-particle states couple poorly, but through mixing of eigenstates they are still present in the correlator
- In particular, we use 4 levels of gauge invariant Gaussian smearing at the source and sink with smearing fraction $\alpha = 0.7$.\(^1\)

Table: The rms radii for the various levels of smearing considered in this work.\(^1\)

<table>
<thead>
<tr>
<th>Sweeps of smearing</th>
<th>rms radius (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.216</td>
</tr>
<tr>
<td>35</td>
<td>0.319</td>
</tr>
<tr>
<td>100</td>
<td>0.539</td>
</tr>
<tr>
<td>200</td>
<td>0.778</td>
</tr>
</tbody>
</table>
Our operator basis (cont)

- We use both χ_1 and χ_2

$$\chi_1(x) = \epsilon^{abc}(u^T a(x) C \gamma_5 d^b(x)) u^c(x)$$
$$\chi_2(x) = \epsilon^{abc}(u^T a(x) C d^b(x)) \gamma_5 u^c(x)$$

This gives us 8 operators resulting in an 8×8 Correlation Matrix

We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices

For our variational parameters, we use $t_0 = 18$ and $\delta t = 2$.

Our operator basis (cont)

- We use both χ_1 and χ_2

$$\chi_1(x) = \epsilon^{abc}(u^T a(x) C \gamma_5 d^b(x)) u^c(x)$$

$$\chi_2(x) = \epsilon^{abc}(u^T a(x) C d^b(x)) \gamma_5 u^c(x)$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix

Our operator basis (cont)

- We use both χ_1 and χ_2
 $$\chi_1(x) = \epsilon^{abc}(u^T a(x) C \gamma_5 d^b(x)) u^c(x)$$
 $$\chi_2(x) = \epsilon^{abc}(u^T a(x) C d^b(x)) \gamma_5 u^c(x)$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
- We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices

Our operator basis (cont)

- We use both χ_1 and χ_2

 $\chi_1(x) = \epsilon^{abc}(u^T a(x) C \gamma_5 d^b(x)) u^c(x)$

 $\chi_2(x) = \epsilon^{abc}(u^T a(x) C d^b(x)) \gamma_5 u^c(x)$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
- We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices
- For our variational parameters, we use $t_0 = 18$ and $\delta t = 2$.\(^1\)

Our operator basis (cont)

- We use both χ_1 and χ_2

$$\chi_1(x) = \epsilon^{abc}(u^T a(x) C \gamma_5 d^b(x)) u^c(x)$$

$$\chi_2(x) = \epsilon^{abc}(u^T a(x) C d^b(x)) \gamma_5 u^c(x)$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
- We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices
- For our variational parameters, we use $t_0 = 18$ and $\delta t = 2$.\(^1\)

- For positive parity states we use the projector:

$$\Gamma_4^+ = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$

Our operator basis (cont)

- We use both χ_1 and χ_2

$$
\chi_1(x) = \epsilon^{abc}(u^{T a}(x) C \gamma_5 d^b(x)) u^c(x)
$$

$$
\chi_2(x) = \epsilon^{abc}(u^{T a}(x) C d^b(x)) \gamma_5 u^c(x)
$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
- We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices
- For our variational parameters, we use $t_0 = 18$ and $\delta t = 2$. \(^1\)
- For positive parity states we use the projector:

$$
\Gamma_4^+ = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}
$$

- For negative parity states we use the projector\(^2\):

$$
\Gamma_4^- = -\gamma_5 \Gamma_4^+ \gamma_5
$$

Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently.

\[w_{\alpha j}(\vec{p}) = \frac{G_{ij}(t_0, \vec{p}; \Gamma)}{2} u_{\alpha j}(\vec{p}) \]

We can identify corresponding eigenvectors across momenta as those with
\[w_{\alpha}(\vec{p}) \cdot w_{\beta}(0) \approx \delta_{\alpha\beta} \]

Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently.
- To do this we make use of the tracking methods developed to track eigenstates across m_π.¹

Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently.
- To do this we make use of the tracking methods developed to track eigenstates across m_π.\(^1\)
- Need to symmetrise and normalise our correlators.

\(^1\) M. S. Mahbub et al., Phys. Rev. D 87, 094506 (2013)
Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently.
- To do this we make use of the tracking methods developed to track eigenstates across m_π.\(^1\)
- Need to symmetrise and normalise our correlators.
- In doing this, we are able to construct orthonormal eigenvectors w^α_j, related to our u^α_i through

$$w^\alpha_j(\vec{p}) = G_{ij}^{1/2}(t_0, \vec{p}; \Gamma) u^\alpha_j(\vec{p})$$

\(^1\)M. S. Mahbub et al., Phys. Rev. D 87, 094506 (2013)
Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently.
- To do this we make use of the tracking methods developed to track eigenstates across m_π. \(^1\)
- Need to symmetrise and normalise our correlators.
- In doing this, we are able to construct orthonormal eigenvectors w^α_j, related to our u^α_i through

$$w^\alpha_j(\vec{p}) = G^{1/2}_{ij}(t_0, \vec{p}; \Gamma) u^\alpha_j(\vec{p})$$

- We can identify corresponding eigenvectors across momenta as those with

$$w^\alpha(\vec{p}) \cdot w^\beta(0) \approx \delta^{\alpha\beta}$$

\(^1\) M. S. Mahbub et al., Phys. Rev. D 87, 094506 (2013)
Nucleon Matrix Elements

- Both positive and negative parity nucleon electromagnetic matrix elements can be decomposed into the standard Pauli-Dirac form

\[
\langle N, p', s' | J^\mu | N, p, s \rangle = \bar{u}(p', s') \left[\gamma^\mu F_1(Q^2) + i \frac{\sigma^{\mu\nu} q_\nu}{2M} F_2(Q^2) \right] u(p, s)
\]
Nucleon Matrix Elements

- Both positive and negative parity nucleon electromagnetic matrix elements can be decomposed into the standard Pauli-Dirac form

\[
\langle N, p', s' | J^\mu | N, p, s \rangle = \bar{u}(p', s') \left[\gamma^\mu F_1(Q^2) + i \frac{\sigma^{\mu\nu} q_\nu}{2M} F_2(Q^2) \right] u(p, s)
\]

- Sachs Form Factors are related to these via

\[
G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2} F_2(Q^2)
\]
\[
G_M(Q^2) = F_1(Q^2) + F_2(Q^2)
\]
Nucleon Matrix Elements (cont)

- SST-propagators are evaluated with the inversion done through the current

\[
\vec{q} = 2\pi \hat{x}
\]

We evaluate the three-point functions with \(\vec{p} = 0 \) and \(\vec{p}' = \vec{q} \)

The ratios used to extract the form factors \(G_E \) and \(G_M \) are

\[
G_E(Q^2) = \left(\frac{2E_q + M}{2E_q + M + 2\gamma_{\pm}^2} \right)^{1/2} R(\vec{q}, 0; \Gamma_{\pm}, \Gamma_{\pm}; \mu = 4)
\]

\[
G_M(Q^2) = \left(\frac{2E_q + M}{2E_q + M + 2\gamma_{\pm}^2} \right)^{1/2} R(\vec{q}, 0; \Gamma_{\pm}, \Gamma_{\pm}; \mu = 3)
\]

where \(\Gamma_{\pm} = \sigma_{i000} \) and \(\Gamma_{\pm} = -\gamma_5 \Gamma_{\pm} \gamma_5 \)
Nucleon Matrix Elements (cont)

- SST-propagators are evaluated with the inversion done through the current
- We use a conserved vector current, with $\mathbf{q} = \frac{2\pi}{L} \hat{x}$
Nucleon Matrix Elements (cont)

- SST-propagators are evaluated with the inversion done through the current.
- We use a conserved vector current, with $\vec{q} = \frac{2\pi}{L} \hat{x}$.
- We evaluate the three-point functions with $\vec{p} = 0$ and $\vec{p}' = \vec{q}$.

The ratios used to extract the form factors G_E and G_M are:

- $G_E(Q^2) = \left(\frac{2E_q + M}{2E_q} \right)^{1/2} R(\vec{q}, 0; \Gamma^\pm 4, \Gamma^\pm 4; \mu = 4)$
- $G_M(Q^2) = E_q + M |\vec{q}| \left(\frac{2E_q + M}{2E_q} \right)^{1/2} R(\vec{q}, 0; \Gamma^\pm 2, \Gamma^\pm 4; \mu = 3)$
Nucleon Matrix Elements (cont)

- SST-propagators are evaluated with the inversion done through the current
- We use a conserved vector current, with \(\vec{q} = \frac{2\pi}{L} \hat{x} \)
- We evaluate the three-point functions with \(\vec{p} = 0 \) and \(\vec{p}' = \vec{q} \)
- The ratios used to extract the form factors \(G_E \) and \(G_M \) are

\[
G_E(Q^2) = \left(\frac{2E_q}{E_q + M} \right)^{1/2} R(\vec{q}, 0; \Gamma_4^\pm, \Gamma_4^\pm; \mu = 4)
\]

\[
G_M(Q^2) = \frac{E_q + M}{|\vec{q}|} \left(\frac{2E_q}{E_q + M} \right)^{1/2} R(\vec{q}, 0; \Gamma_2^\pm, \Gamma_4^\pm; \mu = 3)
\]

where

\[
\Gamma_i^+ = \begin{pmatrix} \sigma_i & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \Gamma_i^- = -\gamma_5 \Gamma_i^+ \gamma_5
\]
Ensemble Details

- For this calculation we are working with the PACS-CS (2+1)-flavour Full QCD ensembles\(^1\) made available through the ILDG

Ensemble Details

- For this calculation we are working with the PACS-CS (2+1)-flavour Full QCD ensembles\(^1\) made available through the ILDG
- Iwasaki gauge action and pre-conditioned Wilson-Clover quark action

Ensemble Details

- For this calculation we are working with the PACS-CS (2+1)-flavour Full QCD ensembles\(^1\) made available through the ILDG
- Iwasaki gauge action and pre-conditioned Wilson-Clover quark action
- These are \(32^3 \times 64\) lattices with \(\beta = 1.9\), corresponding to a physical lattice spacing of \(0.0907(13)\) fm

For this calculation we are working with the PACS-CS (2+1)-flavour Full QCD ensembles\(^1\) made available through the ILDG

Iwasaki gauge action and pre-conditioned Wilson-Clover quark action

These are \(32^3 \times 64\) lattices with \(\beta = 1.9\), corresponding to a physical lattice spacing of \(0.0907(13)\) fm

There are five light quark-masses

\[
\begin{array}{cccc}
\hline
m_\pi\ (\text{MeV}) & n_{\text{cfgs}} & n_{\text{srcs/cfg}} & n_{\text{srcs}} \\
\hline
702 & 350 & 2 & 700 \\
570 & 350 & 2 & 700 \\
411 & 350 & 2 & 700 \\
296 & 350 & 2 & 700 \\
156 & 200 & 6 & 1200 \\
\hline
\end{array}
\]

Positive Parity Spectrum

\[M \text{ (GeV)} \]

\[m_{\pi}^2 \text{ (GeV}^2) \]
$N^*(1/2^+) \text{ wave function} - m_\pi = 570 \text{ MeV}$

$N^*(1/2^+) \text{ wave function} - m_\pi = 156 \text{ MeV}$

$^1D. \text{ Roberts et al., Phys. Rev. D 89, 074501 (2014)}$
Negative Parity Spectrum
Multi-particle states couple weakly to our choice of interpolators and so their contribution is only significant in the tail of the correlator.1

1M. S. Mahbub et al., Annals Phys. \textbf{342} (2014) 270-282
Multi-particle states couple weakly to our choice of interpolators and so their contribution is only significant in the tail of the correlator.1

We consider logG of our projected 2pt-correlators to identify regions where multi-particle contributions are suppressed relative to the nucleon excitation.

1M. S. Mahbub et al., Annals Phys. \textbf{342} (2014) 270-282
LogG

- Multi-particle states couple weakly to our choice of interpolators and so their contribution is only significant in the tail of the correlator.\(^1\)
- We consider logG of our projected 2pt-correlators to identify regions where multi-particle contributions are suppressed relative to the nucleon excitation.
- On going work will broaden our basis to include multi-particle operators.

\(^1\)M. S. Mahbub et al., Annals Phys. 342 (2014) 270-282
Projected Correlator for the second $\frac{1}{2}^-$ eigenstate:

$m_\pi = 570$ MeV

Want linear behaviour in logG around and after $t_s = 21$
Projected Correlator for the second $^{1/2^-}$ eigenstate:

$m_\pi = 296$ MeV

Want linear behaviour in logG around and after $t_s = 21$
Quark Sector Results: GE, u in p (Positive Parity)

$m_\pi = 570$ MeV

![Graph showing GE as a function of t]
Quark Sector Results: GE, d in p (Positive Parity)

$m_\pi = 570$ MeV
Quark Sector Results: GM, u in p (Positive Parity)

$m_\pi = 570$ MeV
Quark Sector Results: GM, d in p (Positive Parity)

$m_\pi = 570$ MeV
Quark Sector Results: GE, u in p (Negative Parity)

$m_\pi = 570$ MeV
Quark Sector Results: GE, d in p (Negative Parity)

$m_\pi = 570$ MeV
Quark Sector Results: GM, u in p (Negative Parity)

$m_\pi = 570$ MeV
Quark Sector Results: GM, d in p (Negative Parity)

$m_\pi = 570$ MeV
Comparison across m_π^2

- In comparing between states and different values of m_π, we need to take into account the small difference in Q^2
Comparison across m^2_π

- In comparing between states and different values of m_π, we need to take into account the small difference in Q^2.
- To facilitate a comparison, we make use of a dipole Ansatz

$$G_i(Q^2) = \left(\frac{\Lambda^2}{\Lambda^2 + Q^2} \right)^2 G_i(0)$$

where Λ is a characteristic scale and $G_i(0)$ is the electric form factor.

To perform a small shift in Q^2, we choose to shift all our extracted form factors to the common value of $Q^2 = 0.16$ GeV2.
Comparison across m^2_π

- In comparing between states and different values of m_π, we need to take into account the small difference in Q^2.
- To facilitate a comparison, we make use of a dipole Ansatz

$$G_i(Q^2) = \left(\frac{\Lambda^2}{\Lambda^2 + Q^2}\right)^2 G_i(0)$$

to perform a small shift in Q^2.
- As we are using a conserved current, we are to extract Λ^2 from the Electric form factor where $G_E(0) = 1$.
Comparison across $m_π^2$

- In comparing between states and different values of $m_π$, we need to take into account the small difference in Q^2.
- To facilitate a comparison, we make use of a dipole Ansatz

$$G_i(Q^2) = \left(\frac{\Lambda^2}{\Lambda^2 + Q^2} \right)^2 G_i(0)$$

to perform a small shift in Q^2.
- As we are using a conserved current, we are to extract Λ^2 from the Electric form factor where $G_E(0) = 1$.
- For this ensemble, we choose to shift all our extracted form factors to the common value of $Q^2 = 0.16 \text{ GeV}^2$.

Quark Sector Results: GE, \(u \) in \(p \) (Positive Parity)
Quark Sector Results: GE, d in p (Positive Parity)
Quark Sector Results: GE, \(u \) in \(p \) (Negative Parity)
Quark Sector Results: GE, d in p (Negative Parity)

$G_E(Q^2)$ vs m_{π}^2 (GeV2)

- Blue points: Data
- Red points: Theory
- Green points: Experiment
In the positive parity sector, at the heavier masses, G_E for the first excited state is smaller than the ground state consistent with the expectation that the state is larger.
G_E summary

- In the positive parity sector, at the heavier masses, G_E for the first excited state is smaller than the ground state consistent with the expectation that the state is larger.
- At the lighter masses, G_E for the excited states appears to be enhanced.
In the positive parity sector, at the heavier masses, G_E for the first excited state is smaller than the ground state consistent with the expectation that the state is larger.

At the lighter masses, G_E for the excited states appears to be enhanced.

- An interesting possibility is that we have important Δ^{++}, π^- dressings

\[
\frac{1}{\sqrt{2}} |\Delta^{++}\pi^-\rangle - \frac{1}{\sqrt{3}} |\Delta^+\pi^0\rangle + \frac{1}{\sqrt{6}} |\Delta^0\pi^+\rangle
\]

which would lead to accumulation of positive charge at the origin.
Quark Sector Results: GM, u in p (Positive Parity)
Quark Sector Results: GM, d in p (Positive Parity)
Quark Sector Results: $G_M, u \ in \ p$ (Negative Parity)

\[
G_M(Q^2) (\mu_N)
\]

\[
m_{\pi}^2 \ [\text{(GeV)}^2]
\]
Quark Sector Results: GM, d in p (Negative Parity)
In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector.
In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector. This is much like the difference in quark sectors observed between the p and Δ^+.

- First excitation appears consistent with $s = \frac{1}{2}$, $l = 1$ to give $j = \frac{1}{2}$.

- Second excitation appears consistent with $s = \frac{3}{2}$, $l = 1$ to give $j = \frac{1}{2}$.
In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector.

This is much like the difference in quark sectors observed between the p and Δ^+.

This is consistent with the states having differing spin configurations.
In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector. This is much like the difference in quark sectors observed between the p and Δ^+. This is consistent with the states having differing spin configurations. First excitation appears consistent with $s = \frac{1}{2}$, $l = 1$ to give $j = \frac{1}{2}$.
G_M summary

- In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector.
- This is much like the difference in quark sectors observed between the p and Δ^+.
- This is consistent with the states having differing spin configurations:
 - First excitation appears consistent with $s = \frac{1}{2}, l = 1$ to give $j = \frac{1}{2}$.
 - Second excitation appears consistent with $s = \frac{3}{2}, l = 1$ to give $j = \frac{1}{2}$.
Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure

- Obtained quality plateaus in both the positive parity and negative parity sectors

- Observed interesting enhancement in electric form factor at lighter masses

- Observed qualitative difference between the quark sectors of the first and second negative parity excitations

- Attempt to access smaller values of Q^2 by using boosts

- Examine the transition amplitudes for ground state nucleon to both positive and negative parity excitations
Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
- Observed interesting enhancement in electric form factor at lighter masses
Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
- Observed interesting enhancement in electric form factor at lighter masses
- Observed qualitative difference between the quark sectors of the first and second negative parity excitations
Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
- Observed interesting enhancement in electric form factor at lighter masses
- Observed qualitative difference between the quark sectors of the first and second negative parity excitations

- Attempt to access smaller values of Q^2 by using boosts
Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
- Observed interesting enhancement in electric form factor at lighter masses
- Observed qualitative difference between the quark sectors of the first and second negative parity excitations

- Attempt to access smaller values of Q^2 by using boosts
- Examine the transition amplitudes for ground state nucleon to both positive and negative parity excitations