Electromagnetic matrix elements for excited Nucleons

Benjamin Owen

Waseem Kamleh, Derek Leinweber, Selim Mahbub, Benjamin Menadue

The 32nd International Symposium on Lattice Field Theory June 26th, 2014

Outline

(1) Correlation Matrix Techniques
(2) Calculation Details
(3) Results

- Excited State Spectrum
- Form Factor extraction
- Quark Sector Results

CM Analysis

- A systematic framework for generating ideal operators for Hamiltonian Eigenstates

CM Analysis

- A systematic framework for generating ideal operators for Hamiltonian Eigenstates
- Require a basis of operators: $\left\{\chi_{i}\right\} ; i \in[1, N]$

CM Analysis

- A systematic framework for generating ideal operators for Hamiltonian Eigenstates
- Require a basis of operators: $\left\{\chi_{i}\right\} ; i \in[1, N]$
- Calculate set of cross-correlation functions

$$
\begin{aligned}
\mathcal{G}_{i j}(t, \vec{p} ; \Gamma) & =\sum_{\vec{x}} e^{-i \vec{p} \cdot \vec{x}} \operatorname{tr}\left(\Gamma\langle\Omega| \chi_{i}(x) \bar{\chi}_{j}(0)|\Omega\rangle\right) \\
& =\sum_{\alpha} e^{-E_{\alpha}(\vec{p}) t} Z_{i}^{\alpha}(\vec{p}) \bar{Z}_{j}^{\alpha}(\vec{p}) \operatorname{tr}\left(\frac{\Gamma\left(\not p+m_{\alpha}\right)}{2 E_{\alpha}(\vec{p})}\right)
\end{aligned}
$$

where $Z_{i}^{\alpha}, \bar{Z}_{j}^{\alpha}$ are the couplings of sink operator $\left(\chi_{i}\right)$ and source operator $\left(\bar{\chi}_{j}\right)$ to the state α

CM Analysis (cont)

- Desire N optimised sink $\left(\phi_{\alpha}\right)$ and source $\left(\bar{\phi}_{\alpha}\right)$ operators

CM Analysis (cont)

- Desire N optimised sink $\left(\phi_{\alpha}\right)$ and source $\left(\bar{\phi}_{\alpha}\right)$ operators
- Ideally, we want these operators to satisfy

$$
\langle\Omega| \phi_{\beta}\left|M_{\alpha}, p, s\right\rangle=\delta_{\alpha \beta} \mathcal{Z}^{\alpha}(\vec{p}) \sqrt{\frac{M_{\alpha}}{E_{\alpha}(\vec{p})}} u(p, s)
$$

CM Analysis (cont)

- Desire N optimised sink (ϕ_{α}) and source ($\bar{\phi}_{\alpha}$) operators
- Ideally, we want these operators to satisfy

$$
\langle\Omega| \phi_{\beta}\left|M_{\alpha}, p, s\right\rangle=\delta_{\alpha \beta} \mathcal{Z}^{\alpha}(\vec{p}) \sqrt{\frac{M_{\alpha}}{E_{\alpha}(\vec{p})}} u(p, s)
$$

- use our basis of operators to construct these new operators

$$
\left.\begin{array}{rl}
\bar{\phi}_{\alpha}(x, \vec{p}) & =\sum_{i=1}^{N} u_{i}^{\alpha}(\vec{p}) \bar{\chi}_{i}(x) \\
\phi_{\alpha}(x, \vec{p}) & =\sum_{i=1}^{N} v_{i}^{\alpha}(\vec{p}) \chi_{i}(x)
\end{array}\right\}
$$

optimal coupling to state $\left|M_{\alpha}, p, s\right\rangle$

CM Analysis (cont)

- Knowledge of the time dependence provides the recurrence relation

$$
\mathcal{G}_{i j}(t+\delta t, \vec{p} ; \Gamma) u_{j}^{\alpha}=e^{-E_{\alpha}(\vec{p}) \delta t} \mathcal{G}_{i j}(t, \vec{p} ; \Gamma) u_{j}^{\alpha}
$$

CM Analysis (cont)

- Knowledge of the time dependence provides the recurrence relation

$$
\mathcal{G}_{i j}(t+\delta t, \vec{p} ; \Gamma) u_{j}^{\alpha}=e^{-E_{\alpha}(\vec{p}) \delta t} \mathcal{G}_{i j}(t, \vec{p} ; \Gamma) u_{j}^{\alpha}
$$

- Thus, the desired values for u_{j}^{α} and v_{i}^{α} are given by

CM Analysis (cont)

- Knowledge of the time dependence provides the recurrence relation

$$
\mathcal{G}_{i j}(t+\delta t, \vec{p} ; \Gamma) u_{j}^{\alpha}=e^{-E_{\alpha}(\vec{p}) \delta t} \mathcal{G}_{i j}(t, \vec{p} ; \Gamma) u_{j}^{\alpha}
$$

- Thus, the desired values for u_{j}^{α} and v_{i}^{α} are given by

CM Eigenvalue Equation

$$
\begin{aligned}
{\left[\mathcal{G}^{-1}\left(t_{0}, \vec{p} ; \Gamma\right) \mathcal{G}\left(t_{0}+\delta t, \vec{p} ; \Gamma\right)\right]_{i j} u_{j}^{\alpha}(\vec{p}) } & =e^{-E_{\alpha}(\vec{p}) \delta t} u_{j}^{\alpha}(\vec{p}) \\
v_{i}^{\alpha}(\vec{p})\left[\mathcal{G}\left(t_{0}+\delta t, \vec{p} ; \Gamma\right) \mathcal{G}^{-1}\left(t_{0}, \vec{p} ; \Gamma\right)\right]_{i j} & =e^{-E_{\alpha}(\vec{p}) \delta t} v_{i}^{\alpha}(\vec{p})
\end{aligned}
$$

CM Analysis (cont)

- Knowledge of the time dependence provides the recurrence relation

$$
\mathcal{G}_{i j}(t+\delta t, \vec{p} ; \Gamma) u_{j}^{\alpha}=e^{-E_{\alpha}(\vec{p}) \delta t} \mathcal{G}_{i j}(t, \vec{p} ; \Gamma) u_{j}^{\alpha}
$$

- Thus, the desired values for u_{j}^{α} and v_{i}^{α} are given by

CM Eigenvalue Equation

$$
\begin{aligned}
{\left[\mathcal{G}^{-1}\left(t_{0}, \vec{p} ; \Gamma\right) \mathcal{G}\left(t_{0}+\delta t, \vec{p} ; \Gamma\right)\right]_{i j} u_{j}^{\alpha}(\vec{p}) } & =e^{-E_{\alpha}(\vec{p}) \delta t} u_{j}^{\alpha}(\vec{p}) \\
v_{i}^{\alpha}(\vec{p})\left[\mathcal{G}\left(t_{0}+\delta t, \vec{p} ; \Gamma\right) \mathcal{G}^{-1}\left(t_{0}, \vec{p} ; \Gamma\right)\right]_{i j} & =e^{-E_{\alpha}(\vec{p}) \delta t} v_{i}^{\alpha}(\vec{p})
\end{aligned}
$$

- Using $v_{i}^{\alpha}(\vec{p}), u_{j}^{\alpha}(\vec{p})$ we are able to project out the correlation function for the state $\left|M_{\alpha}, p, s\right\rangle$

$$
\mathcal{G}_{\alpha}(t, \vec{p} ; \Gamma)=v_{i}^{\alpha}(\vec{p}) \mathcal{G}_{i j}(t, \vec{p} ; \Gamma) u_{j}^{\alpha}(\vec{p})
$$

CM Analysis for 3pt-functions

- The eigenvectors derived from the two-point analysis can be used to project out the three-point function

CM Analysis for 3pt-functions

- The eigenvectors derived from the two-point analysis can be used to project out the three-point function
- The key is to ensure that the eigenvector corresponds to the momentum to be projected at the source / sink

$$
\mathcal{G}^{\alpha}\left(\vec{p}^{\prime}, \vec{p} ; t_{2}, t_{1} ; \Gamma^{\prime}\right)=v_{i}^{\alpha}\left(\vec{p}^{\prime}\right) \mathcal{G}_{i j}\left(\vec{p}^{\prime}, \vec{p} ; t_{2}, t_{1} ; \Gamma^{\prime}\right) u_{j}^{\alpha}(\vec{p}) .
$$

CM Analysis for 3pt-functions

- The eigenvectors derived from the two-point analysis can be used to project out the three-point function
- The key is to ensure that the eigenvector corresponds to the momentum to be projected at the source / sink

$$
\mathcal{G}^{\alpha}\left(\vec{p}^{\prime}, \vec{p} ; t_{2}, t_{1} ; \Gamma^{\prime}\right)=v_{i}^{\alpha}\left(\vec{p}^{\prime}\right) \mathcal{G}_{i j}\left(\vec{p}^{\prime}, \vec{p} ; t_{2}, t_{1} ; \Gamma^{\prime}\right) u_{j}^{\alpha}(\vec{p}) .
$$

- With the desired state now isolated, one simply uses the projected correlation functions in the ratio to extract the matrix element.

CM Analysis for 3pt-functions

- The eigenvectors derived from the two-point analysis can be used to project out the three-point function
- The key is to ensure that the eigenvector corresponds to the momentum to be projected at the source / sink

$$
\mathcal{G}^{\alpha}\left(\vec{p}^{\prime}, \vec{p} ; t_{2}, t_{1} ; \Gamma^{\prime}\right)=v_{i}^{\alpha}\left(\vec{p}^{\prime}\right) \mathcal{G}_{i j}\left(\vec{p}^{\prime}, \vec{p} ; t_{2}, t_{1} ; \Gamma^{\prime}\right) u_{j}^{\alpha}(\vec{p}) .
$$

- With the desired state now isolated, one simply uses the projected correlation functions in the ratio to extract the matrix element.
- In this work we have used the following ratio,

$$
R^{\alpha}\left(\vec{p}^{\prime}, \vec{p} ; \Gamma^{\prime}, \Gamma\right)=\sqrt{\frac{\mathcal{G}^{\alpha}\left(\vec{p}^{\prime}, \vec{p} ; t_{2}, t_{1} ; \Gamma^{\prime}\right) \mathcal{G}^{\alpha}\left(\vec{p}, \vec{p}^{\prime} ; t_{2}, t_{1} ; \Gamma^{\prime}\right)}{\mathcal{G}^{\alpha}\left(\vec{p}, t_{2} ; \Gamma\right) \mathcal{G}^{\alpha}\left(\vec{p}^{\prime}, t_{2} ; \Gamma\right)}} .
$$

Our operator basis

- It is important to use a basis that has good overlap with the states of interest

Our operator basis

- It is important to use a basis that has good overlap with the states of interest
- We choose to local operators of varying source and sink widths

Our operator basis

- It is important to use a basis that has good overlap with the states of interest
- We choose to local operators of varying source and sink widths
- Use of varying widths allows us to separate radial excitations

Our operator basis

- It is important to use a basis that has good overlap with the states of interest
- We choose to local operators of varying source and sink widths
- Use of varying widths allows us to separate radial excitations
- Multi-particle states couple poorly, but through mixing of eigenstates they are still present in the correlator

Our operator basis

- It is important to use a basis that has good overlap with the states of interest
- We choose to local operators of varying source and sink widths
- Use of varying widths allows us to separate radial excitations
- Multi-particle states couple poorly, but through mixing of eigenstates they are still present in the correlator
- In particular, we use 4 levels of gauge invariant Gaussian smearing at the source and sink with smearing fraction $\alpha=0.7$. ${ }^{1}$

Table: The rms radii for the various levels of smearing considered in this work. ${ }^{1}$

Sweeps of smearing	rms radius (fm)
16	0.216
35	0.319
100	0.539
200	0.778

Our operator basis (cont)

- We use both χ_{1} and χ_{2}

$$
\begin{aligned}
& \chi_{1}(x)=\epsilon^{a b c}\left(u^{T a}(x) C \gamma_{5} d^{b}(x)\right) u^{c}(x) \\
& \chi_{2}(x)=\epsilon^{a b c}\left(u^{T a}(x) C d^{b}(x)\right) \gamma_{5} u^{c}(x)
\end{aligned}
$$

${ }^{1}$ M. S. Mahbub et al., Phys. Lett. B. 707, (2012) 389
${ }^{2}$ B. J. Menadue et al., arXiv:1302.4152 [hep-lat] (2013)

Our operator basis (cont)

- We use both χ_{1} and χ_{2}

$$
\begin{aligned}
& \chi_{1}(x)=\epsilon^{a b c}\left(u^{T a}(x) C \gamma_{5} d^{b}(x)\right) u^{c}(x) \\
& \chi_{2}(x)=\epsilon^{a b c}\left(u^{T a}(x) C d^{b}(x)\right) \gamma_{5} u^{c}(x)
\end{aligned}
$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
${ }^{1}$ M. S. Mahbub et al., Phys. Lett. B. 707, (2012) 389
${ }^{2}$ B. J. Menadue et al., arXiv:1302.4152 [hep-lat] (2013)

Our operator basis (cont)

- We use both χ_{1} and χ_{2}

$$
\begin{aligned}
& \chi_{1}(x)=\epsilon^{a b c}\left(u^{T a}(x) C \gamma_{5} d^{b}(x)\right) u^{c}(x) \\
& \chi_{2}(x)=\epsilon^{a b c}\left(u^{T a}(x) C d^{b}(x)\right) \gamma_{5} u^{c}(x)
\end{aligned}
$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
- We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices
${ }^{1}$ M. S. Mahbub et al., Phys. Lett. B. 707, (2012) 389
${ }^{2}$ B. J. Menadue et al., arXiv:1302.4152 [hep-lat] (2013)

Our operator basis (cont)

- We use both χ_{1} and χ_{2}

$$
\begin{aligned}
& \chi_{1}(x)=\epsilon^{a b c}\left(u^{T a}(x) C \gamma_{5} d^{b}(x)\right) u^{c}(x) \\
& \chi_{2}(x)=\epsilon^{a b c}\left(u^{T a}(x) C d^{b}(x)\right) \gamma_{5} u^{c}(x)
\end{aligned}
$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
- We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices
- For our variational parameters, we use $t_{0}=18$ and $\delta t=2 .{ }^{1}$
${ }^{1}$ M. S. Mahbub et al., Phys. Lett. B. 707, (2012) 389
${ }^{2}$ B. J. Menadue et al., arXiv:1302.4152 [hep-lat] (2013)

Our operator basis (cont)

- We use both χ_{1} and χ_{2}

$$
\begin{aligned}
& \chi_{1}(x)=\epsilon^{a b c}\left(u^{T a}(x) C \gamma_{5} d^{b}(x)\right) u^{c}(x) \\
& \chi_{2}(x)=\epsilon^{a b c}\left(u^{T a}(x) C d^{b}(x)\right) \gamma_{5} u^{c}(x)
\end{aligned}
$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
- We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices
- For our variational parameters, we use $t_{0}=18$ and $\delta t=2 .{ }^{1}$
- For positive parity states we use the projector:

$$
\Gamma_{4}^{+}=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

${ }^{1}$ M. S. Mahbub et al., Phys. Lett. B. 707, (2012) 389
${ }^{2}$ B. J. Menadue et al., arXiv:1302.4152 [hep-lat] (2013)

Our operator basis (cont)

- We use both χ_{1} and χ_{2}

$$
\begin{aligned}
& \chi_{1}(x)=\epsilon^{a b c}\left(u^{T a}(x) C \gamma_{5} d^{b}(x)\right) u^{c}(x) \\
& \chi_{2}(x)=\epsilon^{a b c}\left(u^{T a}(x) C d^{b}(x)\right) \gamma_{5} u^{c}(x)
\end{aligned}
$$

- This gives us 8 operators resulting in an 8×8 Correlation Matrix
- We perform a single CM analysis and use these eigenvectors to project out the eigenstate correlators for all times slices
- For our variational parameters, we use $t_{0}=18$ and $\delta t=2 .{ }^{1}$
- For positive parity states we use the projector:

$$
\Gamma_{4}^{+}=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

- For negative parity states we use the projector ${ }^{2}$:

$$
\Gamma_{4}^{-}=-\gamma_{5} \Gamma_{4}^{+} \gamma_{5}
$$

${ }^{1}$ M. S. Mahbub et al., Phys. Lett. B. 707, (2012) 389
${ }^{2}$ B. J. Menadue et al., arXiv:1302.4152 [hep-lat] (2013)

Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently
${ }^{1}$ M. S. Mahbub et al., Phys. Rev. D 87, 094506 (2013)

Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently
- To do this we make use of the tracking methods developed to track eigenstates across $m_{\pi} .{ }^{1}$
${ }^{1}$ M. S. Mahbub et al., Phys. Rev. D 87, 094506 (2013)

Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently
- To do this we make use of the tracking methods developed to track eigenstates across $m_{\pi} .{ }^{1}$
- Need to symmetrise and normalise our correlators
${ }^{1}$ M. S. Mahbub et al., Phys. Rev. D 87, 094506 (2013)

Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently
- To do this we make use of the tracking methods developed to track eigenstates across $m_{\pi} .{ }^{1}$
- Need to symmetrise and normalise our correlators
- In doing this, we are able to construct orthonormal eigenvectors w_{j}^{α}, related to our u_{i}^{α} through

$$
w_{j}^{\alpha}(\vec{p})=\mathcal{G}_{i j}^{1 / 2}\left(t_{0}, \vec{p} ; \Gamma\right) u_{j}^{\alpha}(\vec{p})
$$

${ }^{1}$ M. S. Mahbub et al., Phys. Rev. D 87, 094506 (2013)

Tracking eigenstates

- Between momenta, it is important to ensure that we order eigenvectors consistently
- To do this we make use of the tracking methods developed to track eigenstates across $m_{\pi} .{ }^{1}$
- Need to symmetrise and normalise our correlators
- In doing this, we are able to construct orthonormal eigenvectors w_{j}^{α}, related to our u_{i}^{α} through

$$
w_{j}^{\alpha}(\vec{p})=\mathcal{G}_{i j}^{1 / 2}\left(t_{0}, \vec{p} ; \Gamma\right) u_{j}^{\alpha}(\vec{p})
$$

- We can identify corresponding eigenvectors across momenta as those with

$$
w^{\alpha}(\vec{p}) \cdot w^{\beta}(0) \approx \delta^{\alpha \beta}
$$

${ }^{1}$ M. S. Mahbub et al., Phys. Rev. D 87, 094506 (2013)

Nucleon Matrix Elements

- Both positive and negative parity nucleon electromagnetic matrix elements can be decomposed into the standard Pauli-Dirac form

$$
\left\langle N, p^{\prime}, s^{\prime}\right| J^{\mu}|N, p, s\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(Q^{2}\right)+i \frac{\sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(Q^{2}\right)\right] u(p, s)
$$

Nucleon Matrix Elements

- Both positive and negative parity nucleon electromagnetic matrix elements can be decomposed into the standard Pauli-Dirac form

$$
\left\langle N, p^{\prime}, s^{\prime}\right| J^{\mu}|N, p, s\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(Q^{2}\right)+i \frac{\sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(Q^{2}\right)\right] u(p, s)
$$

- Sachs Form Factors are related to these via

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{4 M^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
\end{aligned}
$$

Nucleon Matrix Elements (cont)

- SST-propagators are evaluated with the inversion done through the current

Nucleon Matrix Elements (cont)

- SST-propagators are evaluated with the inversion done through the current
- We use a conserved vector current, with $\vec{q}=\frac{2 \pi}{L} \hat{x}$

Nucleon Matrix Elements (cont)

- SST-propagators are evaluated with the inversion done through the current
- We use a conserved vector current, with $\vec{q}=\frac{2 \pi}{L} \hat{x}$
- We evaluate the three-point functions with $\vec{p}=0$ and $\vec{p}^{\prime}=\vec{q}$

Nucleon Matrix Elements (cont)

- SST-propagators are evaluated with the inversion done through the current
- We use a conserved vector current, with $\vec{q}=\frac{2 \pi}{L} \hat{x}$
- We evaluate the three-point functions with $\vec{p}=0$ and $\vec{p}^{\prime}=\vec{q}$
- The ratios used to extract the form factors G_{E} and G_{M} are

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =\left(\frac{2 E_{q}}{E_{q}+M}\right)^{1 / 2} R\left(\vec{q}, 0 ; \Gamma_{4}^{ \pm}, \Gamma_{4}^{ \pm} ; \mu=4\right) \\
G_{M}\left(Q^{2}\right) & =\frac{E_{q}+M}{|\vec{q}|}\left(\frac{2 E_{q}}{E_{q}+M}\right)^{1 / 2} R\left(\vec{q}, 0 ; \Gamma_{2}^{ \pm}, \Gamma_{4}^{ \pm} ; \mu=3\right)
\end{aligned}
$$

where

$$
\Gamma_{i}^{+}=\left(\begin{array}{cc}
\sigma^{i} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad \Gamma_{i}^{-}=-\gamma_{5} \Gamma_{i}^{+} \gamma_{5}
$$

Ensemble Details

- For this calculation we are working with the PACS-CS (2+1)-flavour Full QCD ensembles ${ }^{1}$ made available through the ILDG
${ }^{1}$ S. Aoki et al., Phys. Rev. D 79, 034503 (2009)

Ensemble Details

- For this calculation we are working with the PACS-CS (2+1)-flavour Full QCD ensembles ${ }^{1}$ made available through the ILDG
- Iwasaki gauge action and pre-conditioned Wilson-Clover quark action
${ }^{1}$ S. Aoki et al., Phys. Rev. D 79, 034503 (2009)

Ensemble Details

- For this calculation we are working with the PACS-CS (2+1)-flavour Full QCD ensembles ${ }^{1}$ made available through the ILDG
- Iwasaki gauge action and pre-conditioned Wilson-Clover quark action
- These are $32^{3} \times 64$ lattices with $\beta=1.9$, corresponding to a physical lattice spacing of $0.0907(13) \mathrm{fm}$
${ }^{1}$ S. Aoki et al., Phys. Rev. D 79, 034503 (2009)

Ensemble Details

- For this calculation we are working with the PACS-CS (2+1)-flavour Full QCD ensembles ${ }^{1}$ made available through the ILDG
- Iwasaki gauge action and pre-conditioned Wilson-Clover quark action
- These are $32^{3} \times 64$ lattices with $\beta=1.9$, corresponding to a physical lattice spacing of $0.0907(13) \mathrm{fm}$
- There are five light quark-masses

Table : Ensemble details

(MeV)	$n_{\text {cfgs }}$	$n_{\text {srcs } / \mathrm{cfg}}$	$n_{\text {srcs }}$
702	350	2	700
570	350	2	700
411	350	2	700
296	350	2	700
156	200	6	1200

${ }^{1}$ S. Aoki et al., Phys. Rev. D 79, 034503 (2009)

Positive Parity Spectrum

$N^{*}\left(1 / 2^{+}\right)$wave function ${ }^{1}-m_{\pi}=570 \mathrm{MeV}$

${ }^{1}$ D. Roberts et al., Phys. Rev. D 89, 074501 (2014)

$N^{*}\left(1 / 2^{+}\right)$wave function ${ }^{1}-m_{\pi}=156 \mathrm{MeV}$

${ }^{1}$ D. Roberts et al., Phys. Rev. D 89, 074501 (2014)

Negative Parity Spectrum

LogG

- Multi-particle states couple weakly to our choice of interpolators and so their contribution is only significant in the tail of the correlator. ${ }^{1}$
${ }^{1}$ M. S. Mahbub et al., Annals Phys. 342 (2014) 270-282

LogG

- Multi-particle states couple weakly to our choice of interpolators and so their contribution is only significant in the tail of the correlator. ${ }^{1}$
- We consider logG of our projected 2pt-correlators to identify regions where multi-particle contributions are suppressed relative to the nucleon excitation
${ }^{1}$ M. S. Mahbub et al., Annals Phys. 342 (2014) 270-282

LogG

- Multi-particle states couple weakly to our choice of interpolators and so their contribution is only significant in the tail of the correlator. ${ }^{1}$
- We consider $\log G$ of our projected 2pt-correlators to identify regions where multi-particle contributions are suppressed relative to the nucleon excitation
- On going work will broaden our basis to include multi-particle operators
${ }^{1}$ M. S. Mahbub et al., Annals Phys. 342 (2014) 270-282

Projected Correlator for the second $1 / 2^{-}$eigenstate:

$m_{\pi}=570 \mathrm{MeV}$
Want linear behaviour in $\log G$ around and after $t_{s}=21$

Projected Correlator for the second $1 / 2^{-}$eigenstate:

 $m_{\pi}=296 \mathrm{MeV}$Want linear behaviour in $\log \mathrm{G}$ around and after $t_{s}=21$

Quark Sector Results: GE, u in p (Positive Parity)

 $m_{\pi}=570 \mathrm{MeV}$

Quark Sector Results: GE, d in p (Positive Parity)

 $m_{\pi}=570 \mathrm{MeV}$

Quark Sector Results: GM, u in p (Positive Parity)

 $m_{\pi}=570 \mathrm{MeV}$

Quark Sector Results: GM, d in p (Positive Parity)

 $m_{\pi}=570 \mathrm{MeV}$

Quark Sector Results: GE, u in p (Negative Parity)

 $m_{\pi}=570 \mathrm{MeV}$

Quark Sector Results: GE, d in p (Negative Parity)

 $m_{\pi}=570 \mathrm{MeV}$

Quark Sector Results: GM, u in p (Negative Parity)

 $m_{\pi}=570 \mathrm{MeV}$

Quark Sector Results: GM, d in p (Negative Parity)

 $m_{\pi}=570 \mathrm{MeV}$

Comparison across m_{π}^{2}

- In comparing between states and different values of m_{π}, we need to take into account the small difference in Q^{2}

Comparison across m_{π}^{2}

- In comparing between states and different values of m_{π}, we need to take into account the small difference in Q^{2}
- To facilitate a comparison, we make use of a dipole Ansatz

$$
G_{i}\left(Q^{2}\right)=\left(\frac{\Lambda^{2}}{\Lambda^{2}+Q^{2}}\right)^{2} G_{i}(0)
$$

to perform a small shift in Q^{2}

Comparison across m_{π}^{2}

- In comparing between states and different values of m_{π}, we need to take into account the small difference in Q^{2}
- To facilitate a comparison, we make use of a dipole Ansatz

$$
G_{i}\left(Q^{2}\right)=\left(\frac{\Lambda^{2}}{\Lambda^{2}+Q^{2}}\right)^{2} G_{i}(0)
$$

to perform a small shift in Q^{2}

- As we are using a conserved current, we are to extract Λ^{2} from the the Electric form factor where $G_{E}(0)=1$

Comparison across m_{π}^{2}

- In comparing between states and different values of m_{π}, we need to take into account the small difference in Q^{2}
- To facilitate a comparison, we make use of a dipole Ansatz

$$
G_{i}\left(Q^{2}\right)=\left(\frac{\Lambda^{2}}{\Lambda^{2}+Q^{2}}\right)^{2} G_{i}(0)
$$

to perform a small shift in Q^{2}

- As we are using a conserved current, we are to extract Λ^{2} from the the Electric form factor where $G_{E}(0)=1$
- For this ensemble, we choose to shift all our extracted form factors to the common value of $Q^{2}=0.16 \mathrm{GeV}^{2}$

Quark Sector Results: GE, u in p (Positive Parity)

Quark Sector Results: GE, d in p (Positive Parity)

Quark Sector Results: GE, u in p (Negative Parity)

Quark Sector Results: GE, d in p (Negative Parity)

G_{E} summary

- In the positive parity sector, at the heavier masses, G_{E} for the first excited state is smaller than the ground state consistent with the expectation that the state is larger

G_{E} summary

- In the positive parity sector, at the heavier masses, G_{E} for the first excited state is smaller than the ground state consistent with the expectation that the state is larger
- At the lighter masses, G_{E} for the excited states appears to be enhanced

G_{E} summary

- In the positive parity sector, at the heavier masses, G_{E} for the first excited state is smaller than the ground state consistent with the expectation that the state is larger
- At the lighter masses, G_{E} for the excited states appears to be enhanced
- An interesting possibility is that we have important Δ^{++}, π^{-}dressings

$$
\frac{1}{\sqrt{2}}\left|\Delta^{++} \pi^{-}\right\rangle-\frac{1}{\sqrt{3}}\left|\Delta^{+} \pi^{0}\right\rangle+\frac{1}{\sqrt{6}}\left|\Delta^{0} \pi^{+}\right\rangle
$$

which would lead to accumulation of positive charge at the origin

Quark Sector Results: GM, u in p (Positive Parity)

Quark Sector Results: GM, d in p (Positive Parity)

Quark Sector Results: GM, u in p (Negative Parity)

Quark Sector Results: GM, d in p (Negative Parity)

G_{M} summary

- In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector

G_{M} summary

- In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector
- This is much like the difference in quark sectors observed between the p and Δ^{+}

G_{M} summary

- In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector
- This is much like the difference in quark sectors observed between the p and Δ^{+}
- This is consistent with the states having differing spin configurations

G_{M} summary

- In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector
- This is much like the difference in quark sectors observed between the p and Δ^{+}
- This is consistent with the states having differing spin configurations
- First excitation appears consistent with $s=\frac{1}{2}, l=1$ to give $j=\frac{1}{2}$

G_{M} summary

- In the negative parity sector, we observe the first and second excitations have differing signs for the single quark sector
- This is much like the difference in quark sectors observed between the p and Δ^{+}
- This is consistent with the states having differing spin configurations
- First excitation appears consistent with $s=\frac{1}{2}, l=1$ to give $j=\frac{1}{2}$
- Second excitation appears consistent with $s=\frac{3}{2}, l=1$ to give $j=\frac{1}{2}$

Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure

Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors

Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
- Observed interesting enhancement in electric form factor at lighter masses

Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
- Observed interesting enhancement in electric form factor at lighter masses
- Observed qualitative difference between the quark sectors of the first and second negative parity excitations

Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
- Observed interesting enhancement in electric form factor at lighter masses
- Observed qualitative difference between the quark sectors of the first and second negative parity excitations
- Attempt to access smaller values of Q^{2} by using boosts

Conclusions and Future Work

- Demonstrated how correlation matrix methods allow us to probe excited state structure
- Obtained quality plateaus in both the positive parity and negative parity sectors
- Observed interesting enhancement in electric form factor at lighter masses
- Observed qualitative difference between the quark sectors of the first and second negative parity excitations
- Attempt to access smaller values of Q^{2} by using boosts
- Examine the transition amplitudes for ground state nucleon to both positive and negative parity excitations

