$\pi-\pi$ Scattering with $N_{f}=2+1+1$ Twisted Mass Fermions

Lattice conference 2014

Bastian Knippschild (HISKP Bonn)

In collaboration with:
Christopher Helmes, Christian Jost, Liuming Liu, Carsten Urbach, Markus Werner

Motivation

- Scattering lengths are fundamental quantities in QCD and ingredients for EFTs and interesting for nuclear physics
- Most particles in the hadron spectrum are resonances described by their mass and decay width
- Some states, e.g. the roper resonance, are not even qualitatively described by naive quark model
- Need non-perturbative method from first principles \rightarrow lattice QCD

Scattering at low Energies

- Some interesting scattering channels:
- π - π scattering for $I=0,1,2 \rightarrow$ e.g. the ρ meson
- $K-\pi$ scattering for $I=1 / 2,3 / 2 \rightarrow$ e.g. the $K^{*}(892)$ and κ meson
- D-meson scattering $\rightarrow X, Y, Z$ states (talk by Liuming Liu on Friday)
- At low energies details of potentials are not important for scattering
- In the partial wave expansion of the scattering process, only the lowest partial waves contribute, here only s-wave

$\pi-\pi$ scattering

- The easiest possible scattering to calculate is $\pi-\pi$ scattering with $I=2$ and pions at rest \rightarrow no disconnected contributions
- The scattering phase-shift δ_{s} can be related to the scattering length a_{s}

$$
\lim _{k \rightarrow 0} k \cot \left(\delta_{s}(k)\right)=-\frac{1}{a_{s}}
$$

- Lüscher ${ }^{1}$: two particles in a box cause energy shift due to interaction
- Energy shift δE is related to the scattering length of the particles

$$
\delta E_{\pi \pi}^{I=2}=-\frac{4 \pi a_{\pi \pi}^{I=2}}{m_{\pi} L^{3}}\left\{1+c_{1} \frac{a_{\pi \pi}^{I=2}}{L}+c_{2} \frac{\left(a_{\pi \pi}^{I=2}\right)^{2}}{L^{2}}\right\}+\mathcal{O}\left(L^{-6}\right)
$$

Laplacian Heaviside Smearing²

- Fermion smearing: $\widetilde{\psi}(n)=\mathcal{S}(n, m) \psi(m)$ with $\mathcal{S}=\Theta\left(\sigma_{s}^{2}+\Delta\right)$

Heaviside function: $\Theta(x)$
Laplace operator: Δ
cutoff for spectrum of $\Delta: \sigma_{s}^{2}$

- Decomposition into eigenvalues $\Lambda_{\Delta}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\Delta}\right)$:

$$
\Delta=V_{\Delta}^{\dagger} \Lambda_{\Delta} V_{\Delta} \quad \rightarrow \quad \mathcal{S}=V_{\Delta}^{\dagger} \Theta\left(\sigma_{s}^{2}+\Lambda_{\Delta}\right) V_{\Delta}=V_{s}^{\dagger} V_{s}
$$

- V_{s} contains N_{v} lowest eigenvectors which are used as sources
- Inversions are stored in perambulator: $V_{s}^{\dagger} \Omega^{-1} V_{s}$

[^0]B. Knippschild (HISKP)

Stochastic LapH ${ }^{3}$

- Introduce N_{R} random vectors, ρ, in T, D and V_{s} $E(\rho)=0$ and $E\left(\rho \rho^{\dagger}\right)=\mathbb{1}$
- ρ must be different for each quark line to avoid bias
- Dilution of random vectors, $P^{(b)} \rho$, to zero many off-diagonal elements $P^{(b)}$ dilution matrix, N_{D} number of dilution vectors
- Statistical errors of correlation functions
- Random vectors $\propto \frac{1}{\sqrt{N_{R}}}$
- Dilution vectors $\propto \frac{1}{N_{D}}$
\Rightarrow Find balance between N_{R} and N_{D} for best signal in dependence of number of inversions, N_{I}

[^1]
Simulation Details

- We want all-to-all propagators for everything because:
- Fierz rearrangement
- Twisted mass: $D_{u}^{-1}=\left[\gamma_{5} D_{d}^{-1} \gamma_{5}\right]^{\dagger}$
- Same perambulators for connected and disconnected diagrams
- Temporal extent not too large: $T=48,64,96$
- block dilution in time with size 2 or 3
\Rightarrow - interlace dilution in LapH-space with size 4 or 6
- full dilution in Dirac space
- Number of random vectors: 5
- Number of eigenvectors: $L=24: 120 ; L=32: 220 ; L=48: 660$

Software Details

- Petsc and Slepc for eigenvector computation
- Lanczos with thick restart
- Chebyshev acceleration
- 3 steps of 3-dim HYP smearing in Laplace operator
- Eigen for all matrix related computations
- tmLQCD library with CG and EigCG for inversions
- CG on GPUs with MPI and OpenMP for $L=24 / 32$
- EigCG on Juqueen with MPI and OpenMP for $L=32 / 48$

Overview over Ensembles

- Ensembles are generated by the European Twisted Mass Collaboration ${ }^{4}$

name	L_{s}	L_{t}	$a m_{\pi}$	$a f_{\pi}$	$\#$ conf	$m_{\pi}[\mathrm{MeV}]$
A30.32	32	64	0.12395	0.06451	100	284
A40.32	32	64	0.14142	0.06791	150	324
A40.24	24	48	0.14492	0.06568	200	332
A40.20	20	48	0.14927	0.06198	150	342
D45.32	32	64	0.12087	0.04799	50	384
B55.32	32	64	0.15518	0.06557	50	372
A60.24	24	48	0.17275	0.07169	200	396
A80.24	24	48	0.19875	0.07623	300	455
A100.24	24	48	0.22293	0.07926	300	510

- Lattice spacings: $A=0.086 \mathrm{fm}, B=0.082 \mathrm{fm}, D=0.062 \mathrm{fm}$
${ }^{4}$ R. Baron et al., PoS LATTICE 2010, 123 (2010) and R. Baron et al., JHEP 1006, 111 (2010)
B. Knippschild (HISKP)
$\pi-\pi$ Scattering in tmLQCD
June 23, 2013

Thermal States

Removal of Thermal states ${ }^{5}$

- Taking the ratio: $\quad \frac{C_{\pi \pi}(t)}{C_{\pi}^{2}(t)} \propto \exp \left(-\delta E_{\pi \pi}^{I=2} t\right)$
\rightarrow Thermal states do not cancel in the ratio
- Use derivative method

$$
\begin{aligned}
R(t+1 / 2) & =\frac{C_{\pi \pi}(t)-C_{\pi \pi}(t+1)}{C_{\pi}^{2}(t)-C_{\pi}^{2}(t+1)} \\
& =A\left(\cosh \left(\delta E_{\pi \pi}^{I=2} t^{\prime}\right)+\sinh \left(\delta E_{\pi \pi}^{I=2} t^{\prime}\right) \operatorname{coth}\left(2 m_{\pi} t^{\prime}\right)\right)
\end{aligned}
$$

with $t^{\prime}=t+\frac{1}{2}-\frac{T}{2}$

- Extract $\delta E_{\pi \pi}^{I=2}$ by fitting $R(t+1 / 2)$

The ratio $R(t+1 / 2)$

Overall data

Overall data - comparison to $N_{f}=2$

Dependence on fit range

- Fitrange: $t_{\text {start }}-22.5$

A60, 100 measurements

A100, 300 measurements

Volume Effects on A40

Conclusions and outlook

- First attempt to extract scattering parameters with $N_{f}=2+1+1$ twisted mass fermions
- Test of viability of stochastic LapH method on large lattices
- Go on to larger lattices: $L=48$ and smaller pion masses \rightarrow approaching the physical point
- Include momenta and displacements
- Closer investigation of systematic effects - might become quite demanding
- Investigation of other scattering processes ...

Thank you!

[^0]: ${ }^{2}$ M. Peardon et al., Phys. Rev. D 80, 054506 (2009)

[^1]: ${ }^{3}$ C. Morningstar et al., Phys. Rev. D 83, 114505 (2011)

