π-π Scattering with $N_f = 2 + 1 + 1$ Twisted Mass Fermions

Lattice conference 2014

Bastian Knippschild (HISKP Bonn)

In collaboration with:

Christopher Helmes, Christian Jost, Liuming Liu, Carsten Urbach, Markus Werner
Motivation

- Scattering lengths are fundamental quantities in QCD and ingredients for EFTs and interesting for nuclear physics.

- Most particles in the hadron spectrum are resonances described by their mass and decay width.

- Some states, e.g., the roper resonance, are not even qualitatively described by naive quark model.

- Need non-perturbative method from first principles \(\rightarrow \) lattice QCD.
Scattering at low Energies

- Some interesting scattering channels:
 - $\pi-\pi$ scattering for $I = 0, 1, 2 \rightarrow$ e.g. the ρ meson
 - $K-\pi$ scattering for $I = 1/2, 3/2 \rightarrow$ e.g. the $K^*(892)$ and κ meson
 - D-meson scattering $\rightarrow X, Y, Z$ states (talk by Liuming Liu on Friday)

- At low energies details of potentials are not important for scattering

- In the partial wave expansion of the scattering process, only the lowest partial waves contribute, here only s-wave
The easiest possible scattering to calculate is $\pi-\pi$ scattering with $I = 2$ and pions at rest \rightarrow no disconnected contributions

The scattering phase-shift δ_s can be related to the scattering length a_s

$$\lim_{k \to 0} k \cot(\delta_s(k)) = -\frac{1}{a_s}$$

Lüscher\(^1\): two particles in a box cause energy shift due to interaction

Energy shift δE is related to the scattering length of the particles

$$\delta E^{I=2}_{\pi\pi} = -\frac{4\pi a^{I=2}_{\pi\pi}}{m_{\pi} L^3} \left\{ 1 + c_1 \frac{a^{I=2}_{\pi\pi}}{L} + c_2 \left(\frac{a^{I=2}_{\pi\pi}}{L^2}\right)^2 \right\} + O(L^{-6})$$

Laplacian Heaviside Smearing

- Fermion smearing: \(\tilde{\psi}(n) = S(n, m)\psi(m) \) with \(S = \Theta(\sigma^2_s + \Delta) \)

- Heaviside function: \(\Theta(x) \)

- Laplace operator: \(\Delta \)

- Cutoff for spectrum of \(\Delta \): \(\sigma^2_s \)

- Decomposition into eigenvalues \(\Lambda_{\Delta} = \text{diag}(\lambda_1, \ldots, \lambda_{\Delta}) \):

\[
\Delta = V_{\Delta}^\dagger \Lambda_{\Delta} V_{\Delta} \quad \rightarrow \quad S = V_{\Delta}^\dagger \Theta(\sigma^2_s + \Lambda_{\Delta}) V_{\Delta} = V_{s}^\dagger V_{s}
\]

- \(V_s \) contains \(N_v \) lowest eigenvectors which are used as sources

- Inversions are stored in perambulator: \(V_s^\dagger \Omega^{-1} V_s \)

Stochastic LapH3

- Introduce N_R random vectors, ρ, in T, D and V_s

 $E(\rho) = 0$ and $E(\rho \rho^\dagger) = 1$

- ρ must be different for each quark line to avoid bias

- Dilution of random vectors, $P^{(b)}\rho$, to zero many off-diagonal elements

 $P^{(b)}$ dilution matrix, N_D number of dilution vectors

- Statistical errors of correlation functions

 - Random vectors $\propto \frac{1}{\sqrt{N_R}}$

 - Dilution vectors $\propto \frac{1}{N_D}$

 \Rightarrow Find balance between N_R and N_D for best signal in dependence of number of inversions, N_I

Simulation Details

- We want all-to-all propagators for everything because:
 - Fierz rearrangement
 - Twisted mass: \(D_u^{-1} = \left[\gamma_5 D_d^{-1} \gamma_5 \right]^\dagger \)
 - Same perambulators for connected and disconnected diagrams
 - Temporal extent not too large: \(T = 48, 64, 96 \)
 - block dilution in time with size 2 or 3
 \(\Rightarrow \) - interlace dilution in LapH-space with size 4 or 6
 - full dilution in Dirac space

- Number of random vectors: 5
- Number of eigenvectors: \(L = 24 : 120; \ L = 32 : 220; \ L = 48 : 660 \)
Software Details

- **Petsc** and **Slepc** for eigenvector computation
 - Lanczos with thick restart
 - Chebyshev acceleration
 - 3 steps of 3-dim HYP smearing in Laplace operator
- **Eigen** for all matrix related computations
- tmLQCD library with CG and EigCG for inversions
 - CG on GPUs with MPI and OpenMP for $L = 24/32$
 - EigCG on Juqueen with MPI and OpenMP for $L = 32/48$
Overview over Ensembles

Ensembles are generated by the European Twisted Mass Collaboration4

<table>
<thead>
<tr>
<th>name</th>
<th>L_s</th>
<th>L_t</th>
<th>$a m_\pi$</th>
<th>$a f_\pi$</th>
<th># conf</th>
<th>m_π [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A30.32</td>
<td>32</td>
<td>64</td>
<td>0.12395</td>
<td>0.06451</td>
<td>100</td>
<td>284</td>
</tr>
<tr>
<td>A40.32</td>
<td>32</td>
<td>64</td>
<td>0.14142</td>
<td>0.06791</td>
<td>150</td>
<td>324</td>
</tr>
<tr>
<td>A40.24</td>
<td>24</td>
<td>48</td>
<td>0.14492</td>
<td>0.06568</td>
<td>200</td>
<td>332</td>
</tr>
<tr>
<td>A40.20</td>
<td>20</td>
<td>48</td>
<td>0.14927</td>
<td>0.06198</td>
<td>150</td>
<td>342</td>
</tr>
<tr>
<td>D45.32</td>
<td>32</td>
<td>64</td>
<td>0.12087</td>
<td>0.04799</td>
<td>50</td>
<td>384</td>
</tr>
<tr>
<td>B55.32</td>
<td>32</td>
<td>64</td>
<td>0.15518</td>
<td>0.06557</td>
<td>50</td>
<td>372</td>
</tr>
<tr>
<td>A60.24</td>
<td>24</td>
<td>48</td>
<td>0.17275</td>
<td>0.07169</td>
<td>200</td>
<td>396</td>
</tr>
<tr>
<td>A80.24</td>
<td>24</td>
<td>48</td>
<td>0.19875</td>
<td>0.07623</td>
<td>300</td>
<td>455</td>
</tr>
<tr>
<td>A100.24</td>
<td>24</td>
<td>48</td>
<td>0.22293</td>
<td>0.07926</td>
<td>300</td>
<td>510</td>
</tr>
</tbody>
</table>

Lattice spacings: $A = 0.086$ fm, $B = 0.082$ fm, $D = 0.062$ fm

4R. Baron et al., PoS LATTICE 2010, 123 (2010) and R. Baron et al., JHEP 1006, 111 (2010)
Thermal States

\[am_{\text{eff}}[C_{\pi}] \]

\[am_{\text{eff}}[C_{\pi}^2] \]

\[am_{\text{eff}}[C_{\pi\pi}] \]

\[6 \ 8 \ 10 \ 12 \ 14 \ 16 \ 18 \ 20 \]

\[x_0/a \]
Removal of Thermal states5

Taking the ratio: \[
\frac{C_{\pi\pi}(t)}{C_{\pi}^2(t)} \propto \exp(-\delta E_{\pi\pi}^I t)
\]

→ Thermal states do not cancel in the ratio

Use derivative method

\[
R(t + \frac{1}{2}) = \frac{C_{\pi\pi}(t) - C_{\pi\pi}(t + 1)}{C_{\pi}^2(t) - C_{\pi}^2(t + 1)}
\]

\[
= A \left(\cosh(\delta E_{\pi\pi}^I t') + \sinh(\delta E_{\pi\pi}^I t') \coth(2m_\pi t') \right)
\]

with \(t' = t + \frac{1}{2} - \frac{T}{2} \)

Extract \(\delta E_{\pi\pi}^I = 2 \) by fitting \(R(t + \frac{1}{2}) \)

The ratio $R(t + 1/2)$
Overall data

The diagram shows a scatter plot of $m_\pi a_{\pi\pi}$ vs. m_π/f_π. The data points are labeled with different symbols and colors corresponding to various datasets:

- **NA48/2 (2010)**
- **A40, L=20**
- **A-ens., L=24**
- **A-ens., L=32**
- **D45, L=32**
- **B55, L=32**

The y-axis represents $m_\pi a_{\pi\pi}$, while the x-axis represents m_π/f_π. The data points are distributed across the graph, indicating the range of values for each dataset.
Overall data - comparison to $N_f = 2$
Dependence on fit range

- Fitrange: \(t_{\text{start}} - 22.5 \)

A60, 100 measurements

\[
\begin{array}{c}
\begin{array}{ccc}
15 & 14 & 13 \\
12 & 11 & 10 \\
-0.23 & -0.22 & -0.21 \\
\end{array}
\end{array}
\]

A100, 300 measurements

\[
\begin{array}{c}
\begin{array}{ccc}
15 & 14 & 13 \\
12 & 11 & 10 \\
-0.31 & -0.30 & -0.29 \\
\end{array}
\end{array}
\]
Volume Effects on A40

A40, L=20, 24, 32
Luescher formular A40.32

$\delta E_{\pi\pi}^{I=2}$ vs $1/L$

B. Knippschild (HISKP)
Conclusions and outlook

First attempt to extract scattering parameters with $N_f = 2 + 1 + 1$ twisted mass fermions

Test of viability of stochastic LapH method on large lattices

Go on to larger lattices: $L = 48$ and smaller pion masses \to approaching the physical point

Include momenta and displacements

Closer investigation of systematic effects - might become quite demanding

Investigation of other scattering processes ...
Thank you!