Z(N) dependence of the pure Yang-Mills gluon propagator in the Landau gauge near Tc

Orlando Oliveira, Paulo Silva

Centro de Física Computacional, Universidade de Coimbra, Portugal

June 25, 2014

3 × < 3 ×

QCD Phase Diagram

- study of the phase diagram of QCD relevant e.g. for heavy ion experiments
- QCD has phase transition where quarks and gluons become deconfined for sufficiently high T
- Polyakov loop
 - order parameter for the confinement-deconfinement phase transition

•
$$L = \langle L(\vec{x}) \rangle \propto e^{-F_q/T}$$

• Definition on the lattice:

$$L(\vec{x}) = \operatorname{Tr} \prod_{t=0}^{N_t-1} \mathcal{U}_4(\vec{x}, t)$$

- $T < T_c$: L = 0 (center symmetry)
- $T > T_c$: $L \neq 0$ (spontaneous breaking of center symmetry)

ヘロン 人間 とくほとくほど

Center symmetry

- Wilson gauge action is invariant under a center transformation
- temporal links on a hyperplane $x_4 = const$ multiplied by

$$z \in Z_3 = \{e^{-i2\pi/3}, 1, e^{i2\pi/3}\}$$

- Polyakov loop $L(\vec{x}) \rightarrow zL(\vec{x})$
- $T < T_c$
 - local P_L phase equally distributed among the three sectors

$$L = \langle L(\vec{x}) \rangle \approx 0$$

- $T > T_c$
 - Z_3 sectors not equally populated: $L \neq 0$

Landau gauge gluon propagator

• At finite T: two independent form factors

$$\mathcal{D}^{ab}_{\mu
u}(\hat{m{q}}) = \delta^{ab} \left(\mathcal{P}^{T}_{\mu
u} \mathcal{D}_{T}(m{q}_{4}^{2},m{ar{q}}) + \mathcal{P}^{L}_{\mu
u} \mathcal{D}_{L}(m{q}_{4}^{2},m{ar{q}})
ight)$$

- D_L and D_T show quite different behaviours with T
- Usually, the propagator is computed such that arg(P_L) < π/3 (Z₃ sector 0)
- what happens in the other sectors?

Lattice setup

- spatial physical volume $\sim (6.5 {\rm fm})^3$
- 100 configs per ensemble

Coarse lattices $a \sim 0.12 fm$

Temp.	$L_s^3 \times L_t$	β	а	L _s a
(MeV)			(fm)	(fm)
265.9	$54^3 imes 6$	5.890	0.1237	6.68
266.4	$54^3 imes 6$	5.891	0.1235	6.67
266.9	$54^3 imes 6$	5.892	0.1232	6.65
267.4	$54^3 imes 6$	5.893	0.1230	6.64
268.0	$54^3 imes 6$	5.8941	0.1227	6.63
268.5	$54^3 imes 6$	5.895	0.1225	6.62
269.0	$54^3 imes 6$	5.896	0.1223	6.60
269.5	$54^3 imes 6$	5.897	0.1220	6.59
270.0	$54^3 imes 6$	5.898	0.1218	6.58
271.0	$54^3 imes 6$	5.900	0.1213	6.55
272.1	$54^3 imes 6$	5.902	0.1209	6.53
273.1	$54^3 imes 6$	5.904	0.1204	6.50

Fine I	attices a	$a\sim 0.0$	09 <i>fm</i>	
Temp.	$L_8^3 \times L_t$	β	а	Lsa
(MeV)	-		(fm)	(fm)
269.2	$72^3 imes 8$	6.056	0.09163	6.60
270.1	$72^3 imes 8$	6.058	0.09132	6.58
271.0	$72^3 imes 8$	6.060	0.09101	6.55
271.5	$72^3 imes 8$	6.061	0.09086	6.54
271.9	$72^3 imes 8$	6.062	0.09071	6.53
272.4	$72^3 imes 8$	6.063	0.09055	6.52
272.9	$72^3 imes 8$	6.064	0.09040	6.51
273.3	$72^3 imes 8$	6.065	0.09025	6.50
273.8	$72^3 imes 8$	6.066	0.09010	6.49
_				COMPUT

Image: A matrix and a matrix

ъ

How-to

for each configuration, 3 gauge fixings after a Z_3 transformation

 $\mathcal{U}_{4}^{\prime}(\vec{x},t=0)=z\mathcal{U}_{4}(\vec{x},t=0)$

configurations classified according to $\langle L \rangle = |L|e^{i\theta}$

 $\theta = \begin{cases} -\pi < \theta \le -\frac{\pi}{3}, & \text{Sector -1}, \\ -\frac{\pi}{3} < \theta \le \frac{\pi}{3}, & \text{Sector 0}, \\ \frac{\pi}{3} < \theta \le \pi, & \text{Sector 1} \end{cases}$

(日)

How-to

Conical cut for momenta above 1GeV; all data below 1GeV

Renormalization:

$$D_{L,T}(\mu^2) = Z_R D_{L,T}^{Lat}(\mu^2) = 1/\mu^2$$

- Renormalization scale: $\mu = 4 \text{ GeV}$
- D_L and D_T renormalized independently

• within each Z(3) sector, $Z_R^{(L)}$ and $Z_R^{(T)}$ agree within errors

- each Z_3 sector is renormalized independently
 - Z_R do not differ between the different Z(3) sectors

・ロト ・ 母 ト ・ 国 ト ・

Coarse lattices, below T_c

Lattice 2014

(日)

Fine lattices, below T_c

Lattice 2014

< □ > < @ > < E > < E >

Coarse lattices, above T_c

Lattice 2014

(日)

Fine lattices, above T_c

Lattice 2014

(日)

Polyakov loop history

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

CENTRO-FÍSICA

э

Polyakov loop history

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○

CENTRO-FÍSICA

э

Removing configurations in wrong phase

Fine lattices

Lattice 2014

CENTRO-FÍSICA

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Conclusions and Outlook

- Correlation between L and the separation of D between the different sectors
 - This can be used to identify the phase transition
- Possible existence of different phases near and above T_c
 - The dynamics differs in each sector
- Outlook:
 - understand physics of different sectors (e.g. mass scales)
 - how guarks change the above picture? look at the distribution of eigenvalues of the Dirac operator

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

Gattringer, Rakow, Schafer, Soldner, PRD66(2002)054502

This work is funded by FEDER, through the Programa Operacional Factores de Competitividade - COMPETE and by National funds through FCT - Fundação para a Ciência e Tecnologia in the frame of project CERN/FP/123620/2011.

< □ > < 同 > < 回 > <

PJS supported by FCT grant SFRH/BPD/40998/2007

