Density of

A novel density of state method for complex action systems

Biagio Lucini

(Based on K. Langfeld and B. Lucini, arXiv:1404.7187)

Lattice 2014, Columbia University, 27th June 2014

Outline

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions
and outlook
(9) Motivations
(2) The method
(3) The system
(4) The algorithm
(5) Results

6 Conclusions and outlook

Outline

Density of
states and sign problem

Biagio Lucini

（9）Motivations

Motivations
The method
The system
The algorithm
Results
Conclusions
and outlook

（2）The method

（3）The system
（4）The algorithm
（5）Results
6．Conclusions and outlook

Motivations

- Numerical simulations of dense QCD still problematic
- The Monte Carlo approach is hindered by the sign problem
- In recent years, much progress has been achieved using an array of new methods
- A different perspective on the approach can give further insights on the problem and on the best solution
- Here we propose an approach based on the density of states and we test it on the $\mathbb{Z}(3)$ spin model

Outline

Density of
states and sign problem

Biagio Lucini
Motivations
The method
The system
The algorithm
Results
Conclusions
and outlook

(1) Motivations

(2) The method
(3) The system
(4) The algorithm
(5) Results

6 Conclusions and outlook

The approach

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

- Using the density of states (or a generalisation thereof) we reduce the partition function to an oscillating one-dimensional integral

The approach

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

- Using the density of states (or a generalisation thereof) we reduce the partition function to an oscillating one-dimensional integral
- Is it a good idea?
- the density of states is hard to determine with numerical techniques
- There is an overlap problem that goes exponentially with the volume

The approach

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

- Using the density of states (or a generalisation thereof) we reduce the partition function to an oscillating one-dimensional integral
- Is it a good idea?
- the density of states is hard to determine with numerical techniques

OR IS IT?

- There is an overlap problem that goes exponentially with the volume

The approach

Density of
states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm
Results
Conclusions and outlook

- Using the density of states (or a generalisation thereof) we reduce the partition function to an oscillating one-dimensional integral
- The density of states can be computed efficiently with the LLR method, which is a first principle approach providing exponential error suppression

The approach

- Using the density of states (or a generalisation thereof) we reduce the partition function to an oscillating one-dimensional integral
- The density of states can be computed efficiently with the LLR method, which is a first principle approach providing exponential error suppression
- But we are still left with a numerical integral of an oscillatory function: how difficult a problem is this?

The approach

Density of
states and
sign problem
Biagio Lucini

- Using the density of states (or a generalisation thereof) we reduce the partition function to an oscillating one-dimensional integral
- The density of states can be computed efficiently with the LLR method, which is a first principle approach providing exponential error suppression
- But we are still left with a numerical integral of an oscillatory function: how difficult a problem is this?

Highly-oscillatory integrals are allegedly difficult to calculate. The main assertion of this paper is that impression is incorrect. As long as appropriate quadrature methods are used, their accuracy increases when oscillation becomes faster. . .
[Arieh Iserles, 2003]

The approach

Density of
states and
sign problem
Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

- Using the density of states (or a generalisation thereof) we reduce the partition function to an oscillating one-dimensional integral
- The density of states can be computed efficiently with the LLR method, which is a first principle approach providing exponential error suppression
- The remaining oscillating integral can be performed with well-established numerical techniques

Outline

Density of
states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm
Results
Conclusions
and outlook

(1) Motivations

(2) The method
(3) The system
(4) The algorithm
(5) Results
6. Conclusions and outlook

The $\mathbb{Z}(3)$ spin model

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

At strong coupling and for large fermion mass, for finite temperature and non-zero chemical potential QCD described by the three-dimensional spin model

$$
\begin{aligned}
& \qquad \begin{aligned}
Z(\mu) & =\sum_{\{\phi\}} \exp \left\{\tau \sum_{x, \nu} \phi_{x} \phi_{x+\nu}^{*}+\sum_{x}\left(\eta \phi_{x}+\bar{\eta} \phi_{x}^{*}\right)\right\} \\
& =\sum_{\{\phi\}} \exp \left\{S[\phi]+S_{h}[\phi]\right\} \\
\text { with } \quad \phi & \in \mathbb{Z}(3), \quad \eta=\kappa e^{\mu} \quad \text { and } \quad \bar{\eta}=\kappa e^{-\mu}
\end{aligned}
\end{aligned}
$$

The action is complex, but the partition function is real
The model has been simulated using complex Langevin techniques and the worm algorithm

Alternative representation for Z

Density of
states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm

Results

Conclusions and outlook

With $\quad N_{0}=\sum_{x} \delta(\phi(x), 1)$,
$N_{z}=\sum_{x} \delta(\phi(x), z)$,

$$
N_{z^{*}}=\sum_{x} \delta\left(\phi(x), z^{*}\right), \quad N_{0}+N_{z}+N_{z^{*}}=V=L^{3}
$$

S_{h} can be written as
$S_{h}=\kappa\left[\left(2 N_{0}-N_{z}-N_{z^{*}}\right) \cosh (\mu)+i \sqrt{3}\left(N_{z}-N_{z^{*}}\right) \sinh (\mu)\right]$
and $Z(\mu)$ as

$$
\begin{aligned}
Z(\mu)= & \sum_{\{\phi\}} \exp \left\{S[\phi]+\kappa\left(3 N_{0}-V\right) \cosh (\mu)\right\} \\
& \cos (\sqrt{3} \kappa \Delta N \sinh (\mu)), \quad \Delta N=N_{z}-N_{z^{*}}
\end{aligned}
$$

In this form $Z(\mu)$ can be determined using the LLR algorithm

Outline

Density of
states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm
Results
Conclusions
and outlook

（1）Motivations

（2）The method
（3）The system
（4）The algorithm
（5）Results
6．Conclusions and outlook

The algorithm

Density of states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

- We define the generalised density of state as

$$
\rho(n)=\sum_{\{\phi\}} \delta(n, \Delta N[\phi]) \exp \left\{S[\phi]+\kappa\left(3 N_{0}[\phi]-V\right) \cosh (\mu)\right\}
$$

so that

$$
Z(\mu)=\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)
$$

Note that $\rho(-n)=\rho(n)$

The algorithm

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

- $\rho(n)=\sum \delta(n, \Delta N) \exp \left\{S+\kappa\left(3 N_{0}-V\right) \cosh (\mu)\right\}$ $Z(\mu)=\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)$

The algorithm

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm

Results

Conclusions and outlook

- $\rho(n)=\sum \delta(n, \Delta N) \exp \left\{S+\kappa\left(3 N_{0}-V\right) \cosh (\mu)\right\}$ $Z(\mu)=\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)$
- We use the ansatz

$$
\rho(n)=\prod_{i=0}^{n} \exp \left\{-a_{i}\right\}
$$

The algorithm

Density of
states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm
Results
Conclusions and outlook

- $\rho(n)=\sum \delta(n, \Delta N) \exp \left\{S+\kappa\left(3 N_{0}-V\right) \cosh (\mu)\right\}$
$Z(\mu)=\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)$
- Ansatz $\rho(n)=\prod_{i=0}^{n} \exp \left\{-a_{i}\right\}$

The algorithm

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

- $\rho(n)=\sum \delta(n, \Delta N) \exp \left\{S+\kappa\left(3 N_{0}-V\right) \cosh (\mu)\right\}$

$$
Z(\mu)=\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)
$$

- Ansatz $\rho(n)=\prod_{i=0}^{n} \exp \left\{-a_{i}\right\}$
- Define n-restricted expectation values

$$
\begin{aligned}
\langle\langle F\rangle\rangle\left(a_{n}\right)= & \frac{1}{\mathcal{N}} \sum_{\{\phi\}} F(\Delta N[\phi]) \theta(\Delta N, n) \exp \left\{a_{n}\right\} \\
& \exp \left\{S[\phi]+\kappa\left(3 N_{0}[\phi]-V\right) \cosh (\mu)\right\}
\end{aligned}
$$

where $\theta(\Delta N, n)=1$ for $|\Delta N[\phi]-n| \leq 1$ and $\theta(\Delta N, n)=0$ otherwise
\mathcal{N} normalisation factor such that $\langle\langle 1\rangle\rangle=1$

The algorithm

Density of
states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm
Results
Conclusions and outlook

- $\rho(n)=\sum \delta(n, \Delta N) \exp \left\{S+\kappa\left(3 N_{0}-V\right) \cosh (\mu)\right\}$ $Z(\mu)=\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)$
- Ansatz $\rho(n)=\prod_{i=0}^{n} \exp \left\{-a_{i}\right\}$
- Define n-restricted expectation values $\langle\langle F\rangle\rangle\left(a_{n}\right)$, which can be evaluated by standard Monte Carlo techniques

The algorithm

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm

Results

Conclusions and outlook

- $\rho(n)=\sum \delta(n, \Delta N) \exp \left\{S+\kappa\left(3 N_{0}-V\right) \cosh (\mu)\right\}$ $Z(\mu)=\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)$
- Ansatz $\rho(n)=\prod_{i=0}^{n} \exp \left\{-a_{i}\right\}$
- Define n-restricted expectation values $\langle\langle F\rangle\rangle\left(a_{n}\right)$, which can be evaluated by standard Monte Carlo techniques
- In each interval $[n-1 ; n+1]$, starting from a trial a_{n}^{0}, determine a_{n} from the recursion

$$
a_{n}^{k+1}=a_{n}^{k}-\frac{\langle\langle\Delta N\rangle\rangle\left(a_{n}^{k}\right)}{\left\langle\left\langle\Delta N^{2}\right\rangle\right\rangle\left(a_{n}^{k}\right)}
$$

The algorithm

Density of
states and sign problem

Biagio Lucini

The method
The system
The algorithm

Results

Conclusions and outlook

- $\rho(n)=\sum \delta(n, \Delta N) \exp \left\{S+\kappa\left(3 N_{0}-V\right) \cosh (\mu)\right\}$

$$
Z(\mu)=\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)
$$

- Ansatz $\rho(n)=\prod_{i=0}^{n} \exp \left\{-a_{i}\right\}$
- Define n-restricted expectation values $\langle\langle F\rangle\rangle\left(a_{n}\right)$, which can be evaluated by standard Monte Carlo techniques
- In each interval $[n-1 ; n+1]$, starting from a trial a_{n}^{0}, determine a_{n} from the recursion

$$
a_{n}^{k+1}=a_{n}^{k}-\frac{\langle\langle\Delta N\rangle\rangle\left(a_{n}^{k}\right)}{\left\langle\left\langle\Delta N^{2}\right\rangle\right\rangle\left(a_{n}^{k}\right)}
$$

- Statistical errors evaluated through a bootstrap procedure

Outline

Density of
states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm
Results
Conclusions and outlook

（1）Motivations

（2）The method
（3）The system
（4）The algorithm
（5）Results

Conclusions and outlook

The density of states near the peak

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The aigorithm
Results
Conclusions and outlook
$L=24, \tau=0.17, \kappa=0.05$

The two determinations are compatible

The density of states far from the peak

Density of states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook
$L=24, \tau=0.17, \kappa=0.05$

ρ determined well over 60 orders of magnitude!

The phase factor

Density of
states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm

Results

- The phase factor $O(\mu)$ is given by

$$
O(\mu)=\frac{\sum_{n} \rho(n) \cos (\sqrt{3} \kappa \sinh (\mu) n)}{\sum_{n} \rho(n)}=\frac{Z(\mu)}{Z(0)}
$$

- Values of $O(\mu)$ close to one mean that the sign problem is mild; conversely, $O(\mu) \ll 1$ means that the system is afflicted by a severe sign problem
- Within the LLR method, $O(\mu)$ can be computed directly using the numerical determination of ρ, and more accurately using a polynomial interpolation $\ln \rho(n)=\sum_{k=0}^{p} c_{k} n^{2 k}$
- $O(\mu)$ can be computed using a snake algorithm with worm updates, and results obtained with the two methods can be compared

Phase twist

Density of

Defined as

$$
p(\mu)=i \frac{\sqrt{3}}{V}\left\langle N_{z}-N_{z^{*}}\right\rangle
$$

Can be computed from the generalised density of states

$$
p(\mu)=\frac{\sum_{n} \rho(n) n \sin (\kappa \sqrt{3} \sinh (\mu) n)}{\sum_{n} \rho(n) \cos (\kappa \sqrt{3} \sinh (\mu) n)}
$$

Can be expressed as the ratio of the oscillating sums

$$
\begin{aligned}
& I_{1}(\mu)=\frac{\sum_{n} \rho(n) n \sin (\kappa \sqrt{3} \sinh (\mu) n)}{\sum_{n} \rho(n)} \\
& I_{2}(\mu)=\frac{\sum_{n} \rho(n) \cos (\kappa \sqrt{3} \sinh (\mu) n)}{\sum_{n} \rho(n)}
\end{aligned}
$$

I_{1} and I_{2} vs. μ - Preliminary

Density of states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm
Results
Conclusions and outlook

Strong cancellations at high μ

$P(\mu)$ vs. μ - Preliminary

Density of states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm
Results
Conclusions and outlook

Good agreement with the worm algorithm

Outline

> Density of
> states and sign problem

Biagio Lucini

(1) Motivations

Motivations

The method
The system
The algorithm
Results
Conclusions and outlook

(2) The method

(3) The system
(4) The algorithm
(5) Results

6 Conclusions and outlook

Conclusions

- We have proposed a new method for studying numerically systems afflicted by a sign problem
- The method rely on
(1) an efficient determination of the density of states with exponential error suppression (provided by the LLR sampling)
(2) a numerical interpolation of the measured density of states
(3) a high-precision semi-analytical determination of a unidimensional highly oscillating integral
- The method has been successfully tested on the $\mathbb{Z}(3)$ spin model
- In order to evaluate its effectiveness for more realistic systems, further studies are needed

Numerical determinations

Density of states and sign problem

Biagio Lucini

Motivations
The method
The system
The algorithm
Results
Conclusions and outlook

$$
L=24, \tau=0.1, \kappa=0.01
$$

Excellent agreement even when cancellations are $\mathcal{O}\left(10^{-16}\right)$

Volume scaling

Density of states and sign problem

Biagio Lucini

Motivations

The method
The system
The algorithm

Results

Conclusions and outlook

Better precision of the LLR determination at any volume and no breaking of the agreement as the volume is increased

