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Motivations

Numerical simulations of dense QCD still problematic
The Monte Carlo approach is hindered by the sign
problem
In recent years, much progress has been achieved
using an array of new methods
A different perspective on the approach can give further
insights on the problem and on the best solution
Here we propose an approach based on the density of
states and we test it on the Z(3) spin model
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The approach

Using the density of states (or a generalisation thereof)
we reduce the partition function to an oscillating
one-dimensional integral
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The approach

Using the density of states (or a generalisation thereof)
we reduce the partition function to an oscillating
one-dimensional integral
Is it a good idea?

the density of states is hard to determine with numerical
techniques
There is an overlap problem that goes exponentially
with the volume
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The approach

Using the density of states (or a generalisation thereof)
we reduce the partition function to an oscillating
one-dimensional integral
Is it a good idea?

the density of states is hard to determine with numerical
techniques OR IS IT?
There is an overlap problem that goes exponentially
with the volume OR IS THERE?
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The approach

Using the density of states (or a generalisation thereof)
we reduce the partition function to an oscillating
one-dimensional integral
The density of states can be computed efficiently with
the LLR method, which is a first principle approach
providing exponential error suppression
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The approach

Using the density of states (or a generalisation thereof)
we reduce the partition function to an oscillating
one-dimensional integral
The density of states can be computed efficiently with
the LLR method, which is a first principle approach
providing exponential error suppression
But we are still left with a numerical integral of an
oscillatory function: how difficult a problem is this?
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The approach

Using the density of states (or a generalisation thereof)
we reduce the partition function to an oscillating
one-dimensional integral
The density of states can be computed efficiently with
the LLR method, which is a first principle approach
providing exponential error suppression
But we are still left with a numerical integral of an
oscillatory function: how difficult a problem is this?

Highly-oscillatory integrals are allegedly difficult to
calculate. The main assertion of this paper is that
impression is incorrect. As long as appropriate
quadrature methods are used, their accuracy increases
when oscillation becomes faster. . .
[Arieh Iserles, 2003]
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The approach

Using the density of states (or a generalisation thereof)
we reduce the partition function to an oscillating
one-dimensional integral
The density of states can be computed efficiently with
the LLR method, which is a first principle approach
providing exponential error suppression
The remaining oscillating integral can be performed
with well-established numerical techniques
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The Z(3) spin model

At strong coupling and for large fermion mass, for finite
temperature and non-zero chemical potential QCD
described by the three-dimensional spin model

Z(µ) =
∑
{φ}

exp
{
τ
∑
x,ν

φx φ
∗
x+ν +

∑
x

(
ηφx + η̄φ∗x

)}
=

∑
{φ}

exp
{

S[φ] + Sh[φ]
}

with φ ∈ Z(3) , η = κeµ and η̄ = κe−µ

The action is complex, but the partition function is real

The model has been simulated using complex Langevin
techniques and the worm algorithm
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Alternative representation for Z

With N0 =
∑

x δ
(
φ(x), 1

)
, Nz =

∑
x δ
(
φ(x), z

)
,

Nz∗ =
∑

x δ
(
φ(x), z∗

)
, N0 + Nz + Nz∗ = V = L3

Sh can be written as

Sh = κ [(2 N0 − Nz − Nz∗) cosh(µ) + i
√

3 (Nz − Nz∗) sinh(µ)
]

and Z(µ) as

Z(µ) =
∑
{φ}

exp
{

S[φ] + κ (3N0 − V) cosh(µ)
}

cos
(√

3κ∆N sinh(µ)
)
, ∆N = Nz − Nz∗

In this form Z(µ) can be determined using the LLR algorithm
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The algorithm

We define the generalised density of state as

ρ(n) =
∑
{φ}

δ
(

n,∆N[φ]
)

exp
{

S[φ] + κ
(

3N0[φ]− V
)

cosh(µ)
}

so that

Z(µ) =
∑

n

ρ(n) cos
(√

3κ sinh(µ)n
)

Note that ρ(−n) = ρ(n)
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The algorithm

ρ(n) =
∑
δ
(

n,∆N
)

exp
{

S + κ
(

3N0 − V
)

cosh(µ)
}

Z(µ) =
∑

n ρ(n) cos
(√

3κ sinh(µ)n
)
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The algorithm

ρ(n) =
∑
δ
(

n,∆N
)

exp
{

S + κ
(

3N0 − V
)

cosh(µ)
}

Z(µ) =
∑

n ρ(n) cos
(√

3κ sinh(µ)n
)

We use the ansatz

ρ(n) =

n∏
i=0

exp{−ai}
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The algorithm

ρ(n) =
∑
δ
(

n,∆N
)

exp
{

S + κ
(

3N0 − V
)

cosh(µ)
}

Z(µ) =
∑

n ρ(n) cos
(√

3κ sinh(µ)n
)

Ansatz ρ(n) =
∏n

i=0 exp{−ai}
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The algorithm

ρ(n) =
∑
δ
(

n,∆N
)

exp
{

S + κ
(

3N0 − V
)

cosh(µ)
}

Z(µ) =
∑

n ρ(n) cos
(√

3κ sinh(µ)n
)

Ansatz ρ(n) =
∏n

i=0 exp{−ai}
Define n-restricted expectation values

〈〈F〉〉(an) =
1
N
∑
{φ}

F (∆N [φ]) θ(∆N, n) exp{an}

exp
{

S[φ] + κ
(

3N0[φ]− V
)

cosh(µ)
}
,

where θ(∆N, n) = 1 for |∆N[φ]− n| ≤ 1 and
θ(∆N, n) = 0 otherwise
N normalisation factor such that 〈〈1〉〉 = 1
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The algorithm

ρ(n) =
∑
δ
(

n,∆N
)

exp
{

S + κ
(

3N0 − V
)

cosh(µ)
}

Z(µ) =
∑

n ρ(n) cos
(√

3κ sinh(µ)n
)

Ansatz ρ(n) =
∏n

i=0 exp{−ai}
Define n-restricted expectation values 〈〈F〉〉(an), which
can be evaluated by standard Monte Carlo techniques
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The algorithm

ρ(n) =
∑
δ
(

n,∆N
)

exp
{

S + κ
(

3N0 − V
)

cosh(µ)
}

Z(µ) =
∑

n ρ(n) cos
(√

3κ sinh(µ)n
)

Ansatz ρ(n) =
∏n

i=0 exp{−ai}
Define n-restricted expectation values 〈〈F〉〉(an), which
can be evaluated by standard Monte Carlo techniques
In each interval [n− 1; n + 1], starting from a trial a0

n,
determine an from the recursion

ak+1
n = ak

n −
〈〈∆N〉〉(ak

n)

〈〈∆N2〉〉(ak
n)
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The algorithm

ρ(n) =
∑
δ
(

n,∆N
)

exp
{

S + κ
(

3N0 − V
)

cosh(µ)
}

Z(µ) =
∑

n ρ(n) cos
(√

3κ sinh(µ)n
)

Ansatz ρ(n) =
∏n

i=0 exp{−ai}
Define n-restricted expectation values 〈〈F〉〉(an), which
can be evaluated by standard Monte Carlo techniques
In each interval [n− 1; n + 1], starting from a trial a0

n,
determine an from the recursion

ak+1
n = ak

n −
〈〈∆N〉〉(ak

n)

〈〈∆N2〉〉(ak
n)

Statistical errors evaluated through a bootstrap
procedure
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The density of states near the peak

L = 24, τ = 0.17, κ = 0.05
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200
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800 histogram

LLR method

The two determinations are compatible
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The density of states far from the peak

L = 24, τ = 0.17, κ = 0.05

-1000 0 1000 2000 3000 4000 5000 6000

N
+
 - N

-

1e-60

1e-45

1e-30

1e-15

1
histogram

density-of-states

ρ determined well over 60 orders of magnitude!
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The phase factor

The phase factor O(µ) is given by

O(µ) =

∑
n ρ(n) cos

(√
3κ sinh(µ) n

)
∑

n ρ(n)
=

Z(µ)

Z(0)

Values of O(µ) close to one mean that the sign problem
is mild; conversely, O(µ)� 1 means that the system is
afflicted by a severe sign problem
Within the LLR method, O(µ) can be computed directly
using the numerical determination of ρ, and more
accurately using a polynomial interpolation
ln ρ(n) =

∑p
k=0 ck n2k

O(µ) can be computed using a snake algorithm with
worm updates, and results obtained with the two
methods can be compared
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Phase twist

Defined as

p(µ) = i

√
3

V
〈Nz − Nz∗〉

Can be computed from the generalised density of states

p(µ) =

∑
n ρ(n) n sin

(
κ
√

3 sinh(µ) n
)

∑
n ρ(n) cos

(
κ
√

3 sinh(µ) n
)

Can be expressed as the ratio of the oscillating sums

I1(µ) =

∑
n ρ(n) n sin

(
κ
√

3 sinh(µ) n
)

∑
n ρ(n)

I2(µ) =

∑
n ρ(n) cos

(
κ
√

3 sinh(µ) n
)

∑
n ρ(n)
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I1 and I2 vs. µ – Preliminary

Strong cancellations at high µ
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P(µ) vs. µ – Preliminary

Good agreement with the worm algorithm
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Conclusions

We have proposed a new method for studying
numerically systems afflicted by a sign problem
The method rely on

1 an efficient determination of the density of states with
exponential error suppression (provided by the LLR
sampling)

2 a numerical interpolation of the measured density of
states

3 a high-precision semi-analytical determination of a
unidimensional highly oscillating integral

The method has been successfully tested on the Z(3)
spin model
In order to evaluate its effectiveness for more realistic
systems, further studies are needed



Density of
states and

sign problem

Biagio Lucini

Motivations

The method

The system

The algorithm

Results

Conclusions
and outlook

Numerical determinations

L = 24, τ = 0.1, κ = 0.01

0 0.5 1 1.5 2

µ

1e-20

1e-16

1e-12

1e-08

0.0001

1

O
(µ

)

dual theory + snake algorithm 

LLR approach

Excellent agreement even when cancellations are O(10−16)
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Volume scaling

0 0.5 1 1.5 2

µ

1e-16

1e-08

1

O
(µ

)
DS L=24
LLR L=24
DS L=22
DS L=20
DS L=18
DS L=16
LLR L=22
LLR L=20
LLR L=18
LLR L=16

Better precision of the LLR determination at any volume and
no breaking of the agreement as the volume is increased
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