SU(2) gauge theory with many flavors of domain-wall fermions

- Introduction
- Setup
- Result of simulation: Nf=2, 4, 6, 8
- Summary/outlook

In collaboration with Norikazu Yamada (KEK), Kei-Ichi Nagai (KMI, Nagoya U.)

Lattice 2014, 23 – 28 June 2014, Columbia Univ.

Introduction

• SU(2) gauge theory

- Many works on confinement mechanism, finite temperature/density
- Beyond standard model: technicolor, conformal window
- Chiral dynamics depending on gauge group and fermion repr.
 - Different symmetry breaking pattern

Fundamental $SU(2): SU(2Nf) \rightarrow Sp(2Nf)$ SU(N) N>2: $SU(Nf)xSU(Nf) \rightarrow SU(Nf)$ Adjoint SU(N): SU(2Nf) \rightarrow SO(2Nf)

- Number of flavors
- Finite temperature/density
- Eigenvalue distribution

strategy

• Chiral symmetric fermion is better device

- Overalp: best symmetry, high numerical cost, involved setup (Aoki phase, etc.)
 H.M., Kikukawa, Yamada, Nagai, Lattice 2010, 2009
- Domain-wall: good properties, numerically feasible
 - approaches to overlap with large Ns
 - Residual mass probes chiral symmetry violation

Present work

- Lattice actions:
 - Iwasaki gauge action
 - Standard domain-wall fermions: Nf=2, 4, 6, 8
- Survey of Nf-dependence with fixed setup
 - Applicability of domain-wall (and overlap) fermions
 - Confining/conformal feature ?
 - Static potential
 - Meson correlators/residual mass
 - Eigenmodes of domainwall/overlap fermion operators (underway)
- Fundamental setup: making basis for further studies
 - Finite T/µ, adjoint fermions
 - Comparion with improved domain-wall, dynamicsal overlap
 - Condition to access the ε-regime

Setup

- Lattice size: 16³x32, Ns=16
- HMC
 - Domain-wall/Pauli-Villars
 - Omelyan integrator + multi-time step (2-level)
 - About 1000 tranjectories at each parameter set

Nf	beta	m
2	0.85	0.20, 0.10, 0.05
	0.90	0.20, 0.10, 0.05
4	0.85	0.20, 0.10, 0.05, 0.03
	0.90	0.20, 0.10, 0.05
6	0.80	0.20, 0.10, 0.05
	0.85	0.20, 0.10, 0.05
	0.90	0.20, 0.10, 0.05
8	0.80	0.20, 0.10, 0.05
	0.85	0.20, 0.10, 0.05

Standard domain-wall fermion action

$$S_{DW} = \sum_{x,s} \bar{\psi}(x,s) D_W(x,y;-M_0) \psi(y,s) -\frac{1}{2} \sum_{x,s} \bar{\psi}(x,s) \left[(1-\gamma_5) \psi(x,s+1) + (1+\gamma_5) \psi(x,s-1) - 2\psi(x,s) \right] + m \left[\bar{\psi}(x,1) P_R \psi(x,L_s) + \bar{\psi}(x,L_s) P_L \psi(x,1) \right] D_W(x,y;M) = M \delta_{x,y} - \frac{1}{2} \sum_{\mu=1}^4 \left\{ (1-\gamma_\mu) U_\mu(x) \delta_{x+\hat{\mu},y} + (1+\gamma_\mu) U_\mu^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu},y} - 4\delta_{x,y} \right\}$$

- M₀: domain-wall height, m: fermion mass
- Ls: extent of 5-th direction
- Boundary conditions: $P_R\psi(s=0) = P_L\psi(s=L_s+1) = 0$
- 4D fermion field:

$$q(x) = P_L \psi(x, s = 1) + P_R \psi(x, s = L_s)$$

$$\bar{q}(x) = \bar{\psi}(x, s = 1)P_R + \bar{\psi}(x, s = L_s)P_L$$

Resources/environment

Machines

- Hitachi SR16000, IBM Blue Gene/Q at KEK
- φ at KMI, Nagoya Univ.

Code:

- Bridge++ (C++)
 - Cf. S.Ueda's poster
- Fortran code
- JLDG (Japan Lattice Data Grid)
 - for fast data transfer

Nf=2: static potential

Nf	beta	m
2	0.85	0.20, 0.10, 0.05
	0.90	0.20, 0.10, 0.05

- Static potential
 - Fitted to V(r) = const A/r + $_{c}\sigma$ r
 - Sommer scale r_0 (or string tension) \rightarrow "lattice spacing"

Nf=2: residual mass

- Lattice spacing vs fermion mass (residual + bare)
- Extrapolation to massless limit seems successful
- To go below present residual mass, larger Ns or improved domainwall are necessary

Nf=2: PS and V meson spectra

- Valence fermion mass dependence: similar behavior as SU(3) case

Nf-dependence of static potential

- Nf-dependence grows as Nf increases.
- For Nf=8 (and 6), confining feature seem to disappear at m=0.

Nf-dependence of residual mass

- General tendency: m_{res} decreases as lattice spacing increases

Nf=8: statix potential

Nf	beta	m
8	0.80	0.20, 0.10, 0.05
	0.85	0.20, 0.10, 0.05

- Static potential
 - Bare mass dependence is large
 - String tension seems to vanish as m goes to zero

Nf=8: scale vs residual mass

- Scale vs scaled residual mass: massless limit is hardly taken

Nf=8: PS and V meson masses

- Meson spectrum at β =0.80 (β =0.85 shows similar results)
- PS-V splitting tends to decrease as m decreases: scale is also largely changed
- Finite size effect: to be quantified

Nf=8: PS and V meson masses

- For m=0.05 at β =0.80 and 0.85
- Local-local correlator seems not to reach plateau
- To be confirmed with wall-source correlators

Nf=6: scale vs residual mass

- Residual mass shows ordinary behavior
- Lattice scale (string tension) vs scaled fermion mass:

Massless limit hardly to take: confining feature disappear as $m \rightarrow 0$

To do

- So far analysis based on confining/chral symmetry broken phase were applied
- Analysis to test conformality such as hyperscaling is planned
- Locality of domainwall/overlap fermion to be confirmed
- Method to improve signals needed for other channels
- Eigenmodes of domainwall/overlap fermion operators

Summary/outlook

Summary

- SU(2) gauge theory with domainwall fermions of Nf=2,4,6,8
- Nf=8: confining feature tends to disappear at small m
- Nf=6 is similar, but no unusual behavior in PS and V meson spectra
- Detailed analyses underway

Outlook

- finite temperature/density
- Residual mass: better to dcrease \rightarrow optimal domainwall ?
- Other gauge group, fermion repr. : adjoint fermions
- Dynamical overlap (fixed topology) in epsilon-regime