APPROACHING CONFORMALITY

T. Nunes da Silva - University of Groningen

Work done in collaboration with M.P. Lombardo (INFN-Frascati), K. Miura (KMI-Nagoya U.) and E. Pallante (U. of Groningen)

university of groningen

SUMMARY

- Motivation and Setup
- The string tension and Λ_{L}
- The wo quantity
- Summary

THE PHASE DIAGRAM

MOTIVATION

Understand the shape of the chiral phase boundary $T_c(N_f)$

Search for precursory effects of conformality

MOTIVATION Т **Preconformal dynamics?** QGP **NEED COMMON SCALE!** T_c(N_f) Hadrons C.W.

N_f^{AF}

Nf

Nf^c

Understand the shape of the chiral phase boundary $T_c(N_f)$

Search for precursory effects of conformality

SETUP

- One loop Symanzik improved + Naik & Tadpole improved staggered fermions;
- Scan in range of β values to locate transition at finite temperature for N_f = 6,8, am = 0.02;
- Zero temperature runs at critical β values at volume 32x64.

 $N_f = 6$

 $N_{\rm f} = 8$

+

Nf / Nt	Nt = 6	Nt = 8
Nf = 6	5.025 ± 0.05	5.20 ± 0.05
Nf = 8	4.1125 ± 0.0125	4.275 ± 0.05

 $N_f = 0$ quenched ensemble

 T_c/Λ_L

POTENTIAL

$$N_f = 6$$

 $N_{\rm f} = 8$

$$V(r) = V_0 - \frac{\alpha}{r} + \sigma r$$

 $T_c/\sqrt{\sigma}$

 $T_c/\sigma^{1/2} \to const.$

 $T_c/\sigma^{1/2}$

THE QUANTITY W₀ [1]

 $W(t) \equiv t \frac{d}{dt} \left\{ t^2 \langle E(t) \rangle \right\} \text{ along the gradient flow.}$ Define $w_0 : W(t)|_{t=w_0^2} = 0.3$

Cheap and easy to compute (no need to calculate quark propagators nor fitting correlation functions)

Naturally smooth

Provides a common UV scale

[1] Borsanyi et al., JHEP 1209 (2012)010

THE FLOWS : $N_F = 0, 6$

THE FLOWS : $N_F = 8$

 $T_c w_0$

 $T_c w_0$

CONCLUSIONS AND OUTLOOK

Last ensemble Nf = 6, Nt = 8 finishing production.

- The ratio T_c/Λ_L exhibits signs of scale separation \Rightarrow indication of preconformality
- T_c and the string tension exhibit a similar sensitivity to the IRFP and their ratio is weakly dependent on Nf

The product T_cw_0 decreases with N_f as expected. A better understanding of finite mass effects is required for a proper estimation of N_f^c . (Work in Progress)

AUTOCORRELATION

Nf = 8, β = 4.1125

CREUTZ RATIOS

$$\chi_{r,t} = -\log \frac{W_{r,t}W_{r+1,t+1}}{W_{r,t+1}W_{r+1,t}} = \frac{\alpha}{r(r+1)} + \sigma$$

