Lattice simulations of G₂-QCD at finite density II

Björn H. Wellegehausen

Institut für Theoretische Physik JLU Giessen

with Axel Maas, Lorenz von Smekal and Andreas Wipf

32nd International Symposium on Lattice Field Theory, Columbia University, New York, 23.06.2014

- G_2 is the smallest simple and simply connected Lie group with trivial center
- Rank 2 \Rightarrow two fundamental representations

(7) Quarks and (14) Gluons

- First order deconfinement transition (pure Gauge Theory) and many more similarities to *SU*(3) Gauge Theory and QCD
- No fermion sign problem at finite density
 - $\Rightarrow\,$ We can investigate the full phase diagram of a Gauge Theory with fundamental fermions and fermionic baryons
 - \Rightarrow We can use G₂-QCD to test methods for QCD at finite density
- Compared to QCD additional bound states like diquarks, hybrids ... present

- G. Cossu, M. Massimo D'Elia, A. Di Giacomo, B. Lucini, C. Pica, G2 gauge theory at finite temperature, JHEP 0710 (2007)
- L. Lptak and S. Olejnik, Casimir scaling in G_2 lattice gauge theory, Phys.Rev. D78 (2008)
- A. Maas, L. von Smekal, B. H. Wellegehausen and A. Wipf, The phase diagram of a gauge theory with fermionic baryons, Phys.Rev. D86 (2012).
- A. Maas, L. von Smekal, B. H. Wellegehausen and A. Wipf, Hadron masses and baryonic scales in G2-QCD at finite density, Phys.Rev. D89 (2014).

K. Holland, P. Minkowski, M. Pepe and U. J. Wiese, Exceptional confinement in G2 gauge theory, Nucl. Phys. B668 (2003) 207

Transitions at finite density

2 Diquark sources and Majorana fermions

3 Results

Transitions at finite density

Heavy Ensemble

 $eta=1.05,\ \kappa=0.147$ Proton mass $m_N=938\,{
m MeV}$

Diquark mass $m_{d(0^+)} = 326 \text{ MeV}$ Lattice spacing $a = 0.357 \text{ fm} \sim (552 \text{MeV})^{-1}$

Light Ensemble

 $eta=0.96,\ \kappa=0.159$ Proton mass $m_N=938\,{
m MeV}$

Diquark mass $m_{d(0^+)} = 247 \text{ MeV}$ Lattice spacing $a = 0.343 \text{ fm} \sim (575 \text{ MeV})^{-1}$

Quark number density
$$n_q = rac{1}{V} rac{\partial \ln Z}{\partial \mu}$$

Quark number density
$$n_q = \frac{1}{V} \frac{\partial \ln Z}{\partial \mu}$$

Quark number density
$$n_q = \frac{1}{V} \frac{\partial \ln Z}{\partial \mu}$$

Quark number density
$$n_q = \frac{1}{V} \frac{\partial \ln Z}{\partial \mu}$$

7 / 20

Diquark sources and Majorana fermions

$$\mathcal{L} = \bar{\psi} D_0(m, m_5, \mu) \psi + \mathcal{L}_1(J) + \mathcal{L}_{\gamma_5}(\tilde{J}) \text{ for } N_f = 1 \text{ Dirac spinor } \psi \text{ with}$$
$$D_0(m, m_5, \mu) = \not{D} - m - m_5\gamma_5 - \mu\gamma_0$$
$$\Rightarrow T = C\gamma_5 \quad \Rightarrow T D_0(m, m_5, \mu) = D_0^*(m, m_5, \mu) T \quad \Rightarrow \det D_0(m, m_5, \mu) \ge 0$$

9 / 20

Possible diquark sources

$$\begin{split} \mathcal{L}_{1}(J) = & \frac{1}{2} \left(J \bar{\psi}^{\mathsf{C}} \psi + J^{*} \bar{\psi} \psi^{\mathsf{C}} \right) & \text{negative parity source} \\ \mathcal{L}_{\gamma_{5}}(\tilde{J}) = & \frac{1}{2} \left(\tilde{J} \bar{\psi}^{\mathsf{C}} \gamma_{5} \psi - \tilde{J}^{*} \bar{\psi} \gamma_{5} \psi^{\mathsf{C}} \right) & \text{positive parity source} \end{split}$$

2 Majorana fermions $\lambda = (\chi, \eta)$ with $\lambda^{\mathsf{C}} = \lambda$ and $\psi = \chi + \mathrm{i} \eta$ $\mathcal{L} = \bar{\lambda} D(m, m_5, \mu, J, \tilde{J}) \lambda$

$$\begin{split} D(m, m_5, \mu, J, \tilde{J}) = & D_0(m, m_5, \mu) + \left(i\tilde{J}_1\gamma_5 - J_2\right)\sigma_1 + \left(J_1 + i\tilde{J}_2\gamma_5\right)\sigma_3\\ D_0(m, m_5, \mu) = \left(\not D - m - m_5\gamma_5\right) - \mu\gamma_0\sigma_2 \end{split}$$

Chiral symmetry without diquark sources for $N_f = 1$

SU(2)
ightarrow U(1)

Goldstone bosons:

Massive

$$d(0^{++}) \sim \bar{\psi}^{\mathsf{C}} \gamma_5 \psi + \bar{\psi} \gamma_5 \psi^{\mathsf{C}}$$
 and $d(0^{+-}) \sim \bar{\psi}^{\mathsf{C}} \gamma_5 \psi - \bar{\psi} \gamma_5 \psi^{\mathsf{C}}$
state:

 $f(0^{++}) \sim \bar{\psi}\psi$

SU(2) generators for the chiral transformation: $T_V = \sigma_2$ and $T_A = \gamma_5 \{\sigma_1, \sigma_3\}$

$$\begin{split} \mathcal{O}_{\mathsf{A},1/3}\,\lambda = & e^{\mathrm{i}\,\alpha\,T_{\mathsf{A},1/3}}\,\lambda \quad \text{and} \quad \bar{\lambda} \to \bar{\lambda}\,e^{\mathrm{i}\,\alpha\,T_{\mathsf{A},1/3}}\\ \mathcal{O}_{\mathsf{V},2}\,\lambda = & e^{\mathrm{i}\,\alpha\,T_{\mathsf{V}}}\,\lambda \quad \text{and} \quad \bar{\lambda} \to \bar{\lambda}\,e^{-\mathrm{i}\,\alpha\,T_{\mathsf{V}}} \end{split}$$

All Possible bilinear bound states for a single Dirac flavour

$$\begin{split} d(0^{+-}) &= \bar{\lambda}\gamma_5\sigma_1\lambda = \bar{\chi}\gamma_5\eta \\ d(0^{++}) &= \bar{\lambda}\gamma_5\sigma_3\lambda = \bar{\chi}\gamma_5\chi - \bar{\eta}\gamma_5\eta \\ d(0^{--}) &= \bar{\lambda}\sigma_1\lambda = \bar{\chi}\eta \\ d(0^{-+}) &= \bar{\lambda}\sigma_3\lambda = \bar{\chi}\chi - \bar{\eta}\eta \\ f(0^{++}) &= \bar{\lambda}\lambda = \bar{\chi}\chi + \bar{\eta}\eta \\ \eta(0^{-+}) &= \bar{\lambda}\gamma_5\lambda = \bar{\chi}\gamma_5\chi + \bar{\eta}\gamma_5\eta \end{split}$$

Under SU(2) transformations they decompose as $2 \otimes 2 = 1 \oplus 3$

negative parity

$$3 \sim \begin{pmatrix} \eta(0^{-+}) \\ d(0^{-+}) \\ d(0^{--}) \end{pmatrix}$$

Operator	Parameter	$O_{A,1}$	<i>O</i> _{A,3}	$O_{V,2}$	Goldstone bosons	Massive state
$\bar{\lambda}\lambda$	т	Х	Х	\checkmark	$d(0^{++})$, $d(0^{+-})$	$f(0^{++})$
$\bar{\lambda}\gamma_5\sigma_1\lambda$	\tilde{J}_1	Х	\checkmark	Х	$d(0^{++})$, $f(0^{++})$	$d(0^{+-})$
$\bar{\lambda}\gamma_5\sigma_3\lambda$	$ ilde{J}_2$	\checkmark	X	X	$d(0^{+-})$, $f(0^{++})$	$d(0^{++})$
$\bar{\lambda}\gamma_5\lambda$	m_5	X	X	\checkmark	$d(0^{-+})$, $d(0^{})$	$\eta(0^{-+})$
$\bar{\lambda}\sigma_1\lambda$	J_2	×	\checkmark	×	$d(0^{-+})$, $\eta(0^{-+})$	$d(0^{})$
$\bar{\lambda}\sigma_{3}\lambda$	J_1	\checkmark	×	×	$d(0^{})$, $\eta(0^{-+})$	$d(0^{-+})$
$\bar{\lambda}\gamma_0\sigma_2\lambda$	μ	Х	Х	\checkmark	-	-

 \checkmark means conserved, \times not conserved

Diquark sources and Majorana fermions - Chiral symmetry

μ	m_5	$J_{1,2}$	т	$ ilde{J}_{1,2}$	Symmetry	Generator
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<i>SU</i> (2)	$T = \{\gamma_5 \sigma_1, \gamma_5 \sigma_3, \sigma_2\}$
\checkmark	\checkmark	\checkmark	X	\checkmark	U(1)	$T = \sigma_2$
\checkmark	\checkmark	\checkmark	\checkmark	x	U(1)	$\mathcal{T}=\gamma_5(ilde{J}_2\sigma_1- ilde{J}_1\sigma_3)$
\checkmark	\checkmark	\checkmark	X	X	U(1)	$T = \gamma_5 (\tilde{J}_2 \sigma_1 - \tilde{J}_1 \sigma_3) + m \sigma_2$
X	\checkmark	\checkmark	\checkmark	\checkmark	U(1)	$T = \sigma_2$
X	\checkmark	\checkmark	X	\checkmark	U(1)	$T = \sigma_2$
X	\checkmark	\checkmark	\checkmark	Х	-	-
x	\checkmark	\checkmark	х	X	-	-
\checkmark	\checkmark	Х	\checkmark	\checkmark	U(1)	$T = \gamma_5(J_1\sigma_1 + J_2\sigma_3)$
\checkmark	\checkmark	×	Х	\checkmark	-	-
\checkmark	\checkmark	×	\checkmark	Х	U(1) or -	$T=\gamma_5(A\sigma_1+B\sigma_3)$
\checkmark	\checkmark	X	X	X	-	_
X	\checkmark	X	\checkmark	\checkmark	-	-
X	\checkmark	х	X	\checkmark	-	_
X	\checkmark	х	\checkmark	Х	-	-
X	\checkmark	x	Х	×	-	-

 \checkmark : no explicit or spontaneous breaking for this operator

Monte-Carlo simulations with Majorana fermions

$$Z_{\rm f} = \int \mathcal{D}\lambda e^{-\frac{1}{2}\bar{\lambda}D\lambda} = {\sf Pf}(CD) = {\sf sgn}({\sf Pf})\sqrt{\det D}$$

• Set of unitary operators $(T_1 = T\sigma_1, T_2 = T\sigma_3, T_3 = -\sigma_2)$ with $T_1T_1^* = T_2T_2^* = -1$ and $T_3T_3^* = 1$ and

$$T_1 D_0 = D_0^* T_1, \quad T_2 D_0 = D_0^* T_2, \quad T_3 D_0 = D_0 T_3$$

 $D_0\psi = \lambda\psi \quad \Rightarrow \quad D_0(\psi,\chi,\eta,\xi) = (\lambda\psi,\lambda\chi,\lambda^*\eta,\lambda^*\xi)$

with linearly independent eigenvectors (ψ, χ, η, ξ).

- eigenvalues together with its complex conjugate \Rightarrow $\mathsf{Pf}(\mathit{CD}_0) \in \mathbb{R}$
- every eigenvalue is two-fold degenerate \Rightarrow $Pf(CD_0) \ge 0$
- For $\mu = 0$ and $m \neq \tilde{J}_1 \neq \tilde{J}_2 \neq 0 \qquad \Rightarrow \quad \mathsf{Pf}(\mathit{CD}) \geq 0$
- For $\mu \neq 0$ and $m \neq \tilde{J}_1 \neq \tilde{J}_2 \neq 0 \qquad \Rightarrow \quad \mathsf{Pf}(\mathit{CD}) \in \mathbb{R}$

Results

Lattice Setup

 $N \times N_t = 8^3 \times 16$, $\beta = 0.96$, $\kappa = 0.151 \implies$ Heavy Quarks

- Condensate changes from a Chiral towards a Diquark Condensate.
- Quark number density vanishes.

Lattice Setup

 $N imes N_t = 12^3 imes 6$, $\beta = 0.96$, $\kappa = 0.156$

- Deconfinement transition
- Almost no Chiral transition visible in the chiral condensate ⇒ Renormalized condensates.

Renormalized Condensates

- Chiral transition shows up in the Chiral and in the Diquark Condensate
- Better signal for Chiral transition in the Diquark Condensate
- Deconfinement and Chiral transition temperature agree

Lattice Setup

 $N \times N_t = 8^3 \times 16$, $\beta = 0.0.96$, $\kappa = 0.156$

Conclusions

- Evidence for a first order nuclear matter transition
 - \Rightarrow Finite size scaling
 - $\Rightarrow\,$ Nucleon mass dependence on μ
 - \Rightarrow Other observables, EoS (pressure)

- First simulation results with diquark sources
 - ⇒ "Improved" Chiral properties at finite lattice spacing, very similar to Twisted-Mass fermions
 - \Rightarrow Spectroscopy at finite diquark source
 - \Rightarrow Critical slowing down at nuclear matter transition due to small eigenvalues, extrapolation with finite diquark sources?