Lattice Formulations of Supersymmetric Gauge Theories with Matter Fields

Anosh Joseph

John von Neumann Institute for Computing (NIC), DESY
Lattice 2014, Columbia University
25 June 2014

Supersymmetric Yang-Mills Theories

Supersymmetric Yang-Mills (SYM) theories exhibit many interesting properties

- Confinement
- Spontaneous chiral symmetry breaking
- Strong coupling - weak coupling duality
- Electric-magnetic duality
- ...

Interesting relations between 16 supercharge YM theory and string theory AdS/CFT (gauge/gravity) correspondence
Many interesting features are at strong coupling
Need non-perturbative definition of SYM: lattice construction

SUSY on the Lattice: Exact Lattice SUSY

Preserve a subset of SUSY algebra exactly on the lattice.
Recent reviews: J. Giedt, [Int. J. Mod. Phys. A 21, 3039 (2006)],
S. Catterall, D. B. Kaplan, M. Ünsal, [Phys. Rept. 484, 71 (2009)],
A.J., [Int. J. Mod. Phys. A 26, 5057 (2011)]

Two approaches. (i) Topological Twisting. [Catterall, Sugino, Kawamoto, Matsuura, Giedt, ...] Inspired by techniques in topological field theory.
E. Witten [Commun. Math. Phys. 117 (1988) 353]
(ii) Orbifolding/deconstruction.
[Kaplan, Ünsal, Cohen, Damgaard, Matsuura, Giedt, ...]
Inspired by the method of "Deconstruction" by Arkani-Hamed, Cohen, Georgi (AHCG).
N. Arkani-Hamed, A. G. Cohen, H. Georgi [Phys. Rev. Lett. 86 (2001) 4757]

Topologically Twisted $\mathcal{N}=(2,2)$ SYM

Dimensional reduction of $4 d \mathcal{N}=1$ SYM theory.
Symmetry group: $\mathrm{SO}(4)_{\mathrm{E}} \times \mathrm{U}(1)$ in $4 d$
Symmetry group in $2 d$:

$$
\mathrm{G}=\mathrm{SO}(2)_{\mathrm{E}} \times \mathrm{SO}(2)_{\mathrm{R}_{1}} \times \mathrm{U}(1)_{\mathrm{R}_{2}} .
$$

$\mathrm{SO}(2)_{\mathrm{E}}$: Euclidean Lorentz symmetry, $\mathrm{SO}(2)_{\mathrm{R}_{1}}$: rotational symmetry along reduced dimensions, $\mathrm{U}(1)_{\mathrm{R}_{2}}$: chiral $\mathrm{U}(1)$ symmetry of the original theory.

Twist gives:

$$
\mathrm{SO}(2)^{\prime}=\text { Diag. Subgroup }\left[\mathrm{SO}(2)_{\mathrm{E}} \times \mathrm{SO}(2)_{\mathrm{R}_{1}}\right] .
$$

B-model twist (or self-dual twist)

Topologically Twisted $\mathcal{N}=(2,2)$ SYM [contd.]

Fermions: Twisted fermions (p-forms) $\eta, \psi_{\mu}, \chi_{\mu \nu}$.

$$
\Psi_{\alpha i}=\left[\eta I+\psi_{\mu} \gamma_{\mu}+\frac{1}{2} \chi_{[12]}\left(\gamma_{1} \gamma_{2}-\gamma_{2} \gamma_{1}\right)\right]_{\alpha i}
$$

$\alpha(=1,2)$: Lorentz spinor index, $i(=1,2)$: flavor index.
Bosons: Under $\mathrm{SO}(2)^{\prime}$, gauge field and scalars transform as vectors.

$$
A_{\mu}=\left(A_{1}, A_{2}\right), \quad B_{\mu}=\left(s_{1}, s_{2}\right)
$$

Can combine them to form complexified gauge fields

$$
\mathcal{A}_{\mu}=A_{\mu}+i B_{\mu} \text { and } \overline{\mathcal{A}}_{\mu}=A_{\mu}-i B_{\mu} .
$$

Topologically Twisted $\mathcal{N}=(2,2) \mathbf{S Y M}$ [contd.]

The unit cell of $\mathcal{N}=(2,2)$ lattice SYM

Topologically Twisted $\mathcal{N}=(2,2) \mathbf{S Y M}$ [contd.]

Supercharges: Also transform as p-forms

$$
\mathcal{Q}_{\alpha i}=\left[\mathcal{Q} I+\mathcal{Q}_{\mu} \gamma_{\mu}+\frac{1}{2} \mathcal{Q}_{[12]}\left(\gamma_{1} \gamma_{2}-\gamma_{2} \gamma_{1}\right)\right]_{\alpha i}
$$

Twisted $\mathcal{N}=(2,2)$ SUSY algebra:

$$
\begin{aligned}
& \{\mathcal{Q}, \mathcal{Q}\}=0, \quad\left\{\mathcal{Q}_{\mu}, \mathcal{Q}_{\nu}\right\}=0, \quad\{\tilde{\mathcal{Q}}, \tilde{\mathcal{Q}}\}=0, \quad\{\mathcal{Q}, \tilde{\mathcal{Q}}\}=0, \\
& \qquad\left\{\mathcal{Q}, \mathcal{Q}_{\mu}\right\}=P_{\mu}, \quad\left\{\tilde{\mathcal{Q}}, \mathcal{Q}_{\mu}\right\}=\epsilon_{\mu \nu} P_{\nu} \\
& \tilde{\mathcal{Q}} \equiv \epsilon_{\mu \nu} \mathcal{Q}_{\mu \nu}
\end{aligned}
$$

Topologically Twisted $\mathcal{N}=(2,2) \mathbf{S Y M}$ [contd.]

Scalar supersymmetry \mathcal{Q} is nilpotent (similar to BRST charge):

$$
\mathcal{Q}^{2}=0
$$

Does not generate any translations on the lattice.
\Longrightarrow Can have lattice realization of a subalgebra of the twisted SUSY algebra

$$
\begin{aligned}
\mathcal{Q} \mathcal{A}_{\mu} & =\psi_{\mu}, & \mathcal{Q} \psi_{\mu} & =0, \\
\mathcal{Q} \overline{\mathcal{A}}_{\mu} & =0, & \mathcal{Q} \chi_{\mu \nu} & =-\left[\overline{\mathcal{D}}_{\mu}, \overline{\mathcal{D}}_{\nu}\right], \\
\mathcal{Q} \eta & =d, & \mathcal{Q} d & =0 .
\end{aligned}
$$

We have $\mathcal{D}_{\mu}=\partial_{\mu}+\mathcal{A}_{\mu}, \overline{\mathcal{D}}_{\mu}=\partial_{\mu}+\overline{\mathcal{A}}_{\mu}$. d : auxiliary field.

Topologically Twisted $\mathcal{N}=(2,2) \mathbf{S Y M}$ [contd.]

Action has \mathcal{Q}-exact form:

$$
S=\mathcal{Q} \frac{1}{g^{2}} \int \operatorname{Tr}\left(\chi_{\mu \nu} \mathcal{F}_{\mu \nu}+\eta\left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}\right]-\frac{1}{2} \eta d\right)
$$

After \mathcal{Q}-variation:

$$
S=\frac{1}{g^{2}} \int \operatorname{Tr}\left(-\overline{\mathcal{F}}_{\mu \nu} \mathcal{F}_{\mu \nu}+\frac{1}{2}\left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}\right]^{2}-\chi_{\mu \nu} \mathcal{D}_{[\mu} \psi_{\nu]}-\eta \overline{\mathcal{D}}_{\mu} \psi_{\mu}\right)
$$

It is \mathcal{Q}-supersymmetric: $\mathcal{Q} S=0$.

$2 d \mathcal{N}=(2,2) \mathbf{S Y M}$ on the Lattice

Discretization on a hypercube. Fields live on on sites, links and plaquettes.
Bosons \rightarrow complexified Wilson links: $\mathcal{A}_{\mu} \rightarrow \mathcal{U}_{\mu}$

$$
\begin{aligned}
& \mathcal{D}_{\mu}^{(+)} f_{\nu}(\mathbf{n})=\mathcal{U}_{\mu}(\mathbf{n}) f_{\nu}\left(\mathbf{n}+\widehat{\boldsymbol{\mu}}_{\mu}\right)-f_{\nu}(\mathbf{n}) \mathcal{U}_{\mu}\left(\mathbf{n}+\widehat{\boldsymbol{\mu}}_{\nu}\right) \\
& \mathcal{D}_{\mu}^{(-)} f_{\mu}(\mathbf{n})=\mathcal{U}_{\mu}(\mathbf{n}) f_{\mu}(\mathbf{n})-{\underset{\mu}{ }\left(\mathbf{n}-\widehat{\boldsymbol{\mu}}_{\mu}\right) \mathcal{U}_{\mu}\left(\mathbf{n}-\widehat{\boldsymbol{\mu}}_{\mu}\right) .}_{\quad \text { P. H. Damgaard and S. Matsuura [Phys. Lett. B 661, 52 (2008)] }}
\end{aligned}
$$

Use of forward and backward difference operators
\Longrightarrow Solutions of lattice theory map one-to-one with that of continuum theory.
Fermion doubling problems evaded.

$$
\text { T. Banks, Y. Dothan, D. Horn [Phys. Lett. B117, } 413 \text { (1982)] }
$$

$2 d \mathcal{N}=(2,2) \mathbf{S Y M}$ on the Lattice [contd.]

\mathcal{Q} transformations on the lattice:

$$
\begin{aligned}
\mathcal{Q} \mathcal{U}_{\mu}(\mathbf{n}) & =\psi_{\mu}(\mathbf{n}) \\
\mathcal{Q} \overline{\mathcal{U}}_{\mu}(\mathbf{n}) & =0 \\
\mathcal{Q} \eta(\mathbf{n}) & =d(\mathbf{n})
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{Q} \psi_{\mu}(\mathbf{n}) & =0 \\
\mathcal{Q} \chi_{\mu \nu}(\mathbf{n}) & =-\overline{\mathcal{D}}_{\mu}^{(+)} \overline{\mathcal{U}}_{\nu}(\mathbf{n}) \\
\mathcal{Q} d(\mathbf{n}) & =0
\end{aligned}
$$

Only \mathcal{Q} is unbroken by discretization.
Bosons and fermions are interchanged at the same place on the lattice.

$$
\begin{aligned}
S= & \frac{1}{g_{\mathrm{LAT}}^{2}} \sum_{\mathbf{n}} \operatorname{Tr}\left(\mathcal{D}_{\mu}^{(+)} \mathcal{U}_{\nu}(\mathbf{n})\right)^{\dagger}\left(\mathcal{D}_{\mu}^{(+)} \mathcal{U}_{\nu}(\mathbf{n})\right)+\frac{1}{2}\left(\mathcal{D}_{\mu}^{\dagger(-)} \mathcal{U}_{\mu}(\mathbf{n})\right)^{2} \\
& -\chi_{\mu \nu}(\mathbf{n}) \mathcal{D}_{[\mu}^{(+)} \psi_{\nu]}(\mathbf{n})-\eta(\mathbf{n}) \mathcal{D}_{\mu}^{\dagger(-)} \psi_{\mu}(\mathbf{n})
\end{aligned}
$$

Including Matter: Fundamental/Higher Reps

Motivations

- SQCD on the lattice (Pure SYM + fundamental matter)
- Exploring technicolor models w/ 2-index matter
- Such constructions appear in string theory: orbifolding/orientifolding

$$
\mathrm{SU}(\mathrm{~N}) \rightarrow \mathrm{SO}(2 \mathrm{~N}) \text { or } \mathrm{Sp}(2 \mathrm{~N})
$$

- Corrigan-Ramond limit:

$$
\mathrm{QCD}(\mathrm{AS}) N_{c}=3: \text { 2-index }=(\text { anti- }) \text { fundamental }
$$

Including Matter: Fundamental/Higher Reps [contd.]

- Action of the theory including matter

$$
S=S_{\mathrm{SYM}}+S_{\text {matter }}+S_{\text {potential }}
$$

- Lattice construction of S_{SYM} - same as discussed before.
- How to construct terms with $S_{\text {matter }}$ in a lattice compatible way?
- Clever trick by Matsuura
- To formulate $\mathcal{N}=(2,2)$ lattice theories with fundamental matter.
S. Matsuura [JHEP 0807, 127 (2008)]
- Can be extended to $3 d$ and other matter representations.

Including Matter: Fundamental/Higher Reps [contd.]

- How to construct them?
- Start from a theory with more susy and in one higher dimension

$$
\text { Examples: } \mathcal{N}=4 \text { SYMs in } 3 d \text { or } 4 d(\mathcal{Q}=8 \text { or } 16)
$$

- Twist the theory \rightarrow Blau-Thompson or Marcus twist.

$$
\begin{aligned}
& \text { M. Blau and G. Thompson [Nucl. Phys. B 492, } 545 \text { (1997)] } \\
& \text { N. Marcus [Nucl. Phys. B 452, } 331 \text { (1995)] }
\end{aligned}
$$

- Dimensionally reduce to a theory with adjoint matter
E.g.: for 8 supercharge theory $3 d \rightarrow 2 d$:

$$
\mathcal{N}=(2,2) \mathrm{SYM}:\left(\mathcal{A}_{a}, \overline{\mathcal{A}}_{a}, \eta, \psi_{a}, \chi_{a b}\right)
$$

Adjoint Matter: $\left(\phi, \bar{\phi}, \bar{\eta}, \bar{\psi}_{a}, \bar{\chi}_{a b}\right)$.

Including Matter: Fundamental/Higher Reps [contd.]

- Elevate the theory to a $2 d$ quiver $\mathcal{N}=(2,2)$ gauge theory.

Gauge group $U\left(N_{1}\right) \times U\left(N_{2}\right)$.
One can take $N_{1}=$ color, $N_{2}=$ flavor.

- Change the representation of matter to bi-fundamental.

Not in conflict with SUSY.
Action: $S=S_{(\mathbf{a d j}, \mathbf{1})}^{\mathrm{SYM}}+S_{(\mathbf{1}, \mathbf{a d j})}^{\mathrm{SYM}}+S_{(\square, \bar{\square})}^{\text {matter }}+S_{(\bar{\square}, \square)}^{\text {matter }}$
Quiver diagram:

Including Matter: Fundamental/Higher Reps [contd.]

Two lattice spacetimes. Connected by bi-fundamental matter fields

$\mathcal{N}=(2,2) U\left(N_{1}\right) \times U\left(N_{2}\right)$ quiver lattice gauge theory with bi-fundamental matter.

Including Matter: Fundamental/Higher Reps [contd.]

- Truncate one side of the quiver lattice gauge theory.

Freeze $U\left(N_{2}\right)$ theory.

- Make fields decorated with hats non-dynamical by hand.

Un-gauging one node of the quiver gives $U\left(N_{2}\right)$ flavor symmetry.

- Resultant theory: A $2 d \mathcal{N}=(2,2)$ lattice gauge theory
with fundamental matter and N_{2} flavor symmetry.
Lattice construction of $3 d \mathcal{N}=4$ theory with fundamental matter also possible A. J. [JHEP 09, 046 (2013)]

Can be extended to theories with matter in higher (2-index) reps: $\Psi^{(i j)}, \Psi^{[i j]}$ etc., with SU, SO, Sp gauge groups.
A. J. [arXiv:1403.4390, To appear in JHEP]

Conclusions

- SUSY lattices possible for certain classes of SYM theories

$$
\begin{aligned}
& \mathcal{Q}=4,8,16 \text { in } d \leq 4 \\
& \text { More on } \mathcal{Q}=16, d=4 \mathrm{SYM}: \\
& \text { See talks by Catterall, Giedt and Schaich. }
\end{aligned}
$$

- Lattice constructions are:
local, gauge-invariant, doubler-free and exact-supersymmetric.
- Non-perturbative explorations, for SYM theories with matter:
fundamental, 2-index,...
- Room for new nonperturbative explorations.

