A HYBRID STRATEGY FOR COMPUTING $a_{\mu}^{LO,HVP}$ on the lattice

Report on M. Golterman, KM, S. Peris: PRD88 (2013) 114508 [GMP13] and arXiv:1405.2389 [GMP14]

+ ongoing work with Jamie Hudspith, Randy Lewis, Antonin Portelli, ...

Lattice 2014, Columbia, June 23, 2014

OUTLINE

- Low- Q^2 systematics problem for typical fits to lattice polarization function data
- Reliable forms for low- Q^2 fitting and a hybrid strategy for $a_\mu^{LO,HVP}$
- Exploratory implementation on existing RBC/UKQCD ensembles with low-Q² contributions via, e.g., the HPQCD time-moment approach

GENERALITIES

- $\hat{\Pi}(Q^2) \equiv \Pi(Q^2) \Pi(0)$, the subtracted EM current polarization function
- $a_{\mu}^{LO,HVP}$ from Euclidean Q^2 integral representation

$$a_{\mu}^{\text{LO,HVP}} = -4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \widehat{\Pi}(Q^2)$$

$$f(Q^2) = m_{\mu}^2 Q^2 Z^3(Q^2) \frac{1 - Q^2 Z(Q^2)}{1 + m_{\mu}^2 Q^2 Z^2(Q^2)}$$

$$Z(Q^2) = \left(\sqrt{(Q^2)^2 + 4m_{\mu}^2 Q^2} - Q^2\right) / (2m_{\mu}^2 Q^2)$$

• NOTE: Peaked at **much** lower Q^2 than analogous dispersive representation as weighted integral over bare $e^+e^- \rightarrow hadrons$ cross-sections

• The once-subtracted dispersion relation for $\Pi(Q^2)$

$$\widehat{\Pi}(Q^2) = -Q^2 \int_{4m_{\pi}^2}^{\infty} ds \, \frac{\rho(s)}{s(s+Q^2)} \, ,$$

- $ightarrow
 ho(s) \ge 0 \Rightarrow$ all derivatives monotonic in Q^2 ; smaller curvature for $\widehat{\Pi}$ at large Q^2 than small Q^2
- ▷ ⇒ potential systematic bias at low- Q^2 when fitting lattice data with many low-error large- Q^2 points and only a few large-error low- Q^2 points
- ▷ High precision hadronic τ decay data for $\rho^{I=1}(s)$ allows construction of extremely physical "dispersive model" for $\widehat{\Pi}^{I=1}(Q^2)$, quantitative examination of systematics for any given fit strategy [GMP13]

More on the low- Q^2 systematic problem

- Integrand peaked at very low Q^2 ($\sim m_{\mu}^2/4$ for I=1)
- Sparse low- Q^2 coverage, especially with PBCs

- Is the in-principle problem a real one?
 - * E.g., good quality VMD+polynomial fit to fake data (underlying dispersive model + MILC covariance), fit interval $0 < Q^2 < 1 \ GeV^2$

* The resulting integrand in the low- Q^2 region, c.f. the underlying dispersive model version

 $a_{\mu}^{LO,HVP}$ "pull" (deviation from exact model value in units of nominal fit error) \sim 18

* Problem worsens with more high- Q^2 fit points

- Eg., [2,2] $\Pi^{I=1}(Q^2)$ Pade fit: pull = 0.5 for 0 → 1 GeV^2 fit window → 4 for 0 → 1.5 GeV^2
- \circ Similarly for [3,2] Pade fit: pull = 0.5 on 0 \rightarrow 1 GeV^2 \rightarrow 1.8 on 0 \rightarrow 1.5 GeV^2

• Lessons

- Better focus on low- Q^2 region needed
- Systematic problem makes testing proposed fit strategies, e.g., using dispersive model, crucial

LOW-Q² CONTRIBUTIONS AND A HYBRID STRATEGY

• Accumulation of $a_{\mu}^{LO,HVP}[0 \le Q^2 \le Q_{max}^2] \equiv a_{\mu}^{LO,HVP}[Q_{max}^2]$ wrt Q_{max}^2

- More than 80% of $a_{\mu}^{LO,HVP}$ accumulated below $Q^2 = 0.1 \ GeV^2$, more than 90% below $Q^2 = 0.2 \ GeV^2$
 - \triangleright Required tolerance on <10-20% contribution above $\sim 0.1-0.2~GeV^2<<$ on low- Q^2 contribution
 - ▷ bulk of contribution from low enough Q² that loworder Pade, conformal variable polynomial, ChPT representations likely to suffice
- Suggests hybrid strategy: low- Q^2 contributions by low- Q^2 -tailored (Pade, conformal polynomial, ChPT) representations, high- Q^2 by direct numerical integration

- Direct numerical integration above $Q^2 \sim 0.1 0.2 \ GeV^2$
 - \triangleright Trapezoid rule errors for $Q^2 > Q_{min}^2$ data
 - Statistical
 - Systematic (trapezoid rule approximation)
 - Uncertainty on $\Pi(0)$ entering $\widehat{\Pi}(Q^2)$
 - \triangleright Investigate using fake data from I = 1 dispersive model, MILC $64^3 \times 144~a \sim 0.06~fm$ covariances
 - ▷ FIGURES: errors on $a_{\mu}^{LO,HVP}[Q^2 > Q_{min}^2]$, as a fraction of $a_{\mu}^{LO,HVP}$

Systematic and statistical errors on the trape-zoid rule evaluation as fractions of $a_{\mu}^{LO,HVP}$

Impact of an uncertainty $\delta \Pi^{I=1}(0) = 0.001$ on $\hat{a}_{\mu}^{LO,HVP}[Q^2 > Q_{min}^2]/a_{\mu}^{LO,HVP}$

- Successful strategies for low- $Q^2 a_{\mu}^{LO,HVP} [Q^2 < Q_{match}^2]$
 - Low-order Pades [Aubin, Blum, Golterman, Peris, PRD86 (2012) 054509; HPQCD, 1403.1778]
 - \triangleright Low-degree polynomials in the conformal variable, $w(z),\; z=\frac{Q^2}{4m_\pi^2},\; w(z)=\frac{1-\sqrt{1+z}}{1+\sqrt{1+z}}$
 - ▷ Appropriately supplemented NNLO ChPT
- Will illustrate fixing parameters from derivatives of dispersive $\Pi^{I=1}(Q^2)$ wrt Q^2 at $Q^2 = 0$ [GMP14] (potentially determinable on lattice via HPQCD time-moment strategy or discrete-difference version thereof)

• Low-order Pades

 \triangleright How low is low?

Pades c.f. dispersive model $0 < Q^2 < 2 \ GeV^2$

Low-order Pades: summary

- \circ With coefficients from Q^2 = 0 derivatives/time moments
 - * [1,1] Pade (up to t^6 moments only) yields sub-1% $a_{\mu}^{LO,HVP}[0< Q^2 < Q^2_{match}]$ systematic error up to $Q^2_{match}>0.2~GeV^2$
 - * [2,2] Pade (up to t^{10} moment) needed for sub-1% systematic for $Q^2_{match} \sim 2 \ GeV^2$ and above
- ALTERNATE IMPLEMENTATION: Pade coefficients also determinable from fit to sufficiently accurate data in interval 0.1 to 0.2 *GeV*² [GMP14]

 \bullet Low-degree polynomials in \boldsymbol{w}

 \triangleright How low is low?

$$P(w) = \sum_{k=1}^{N} c_k w^k \text{ c.f. dispersive model,}$$
$$N = 1, \cdots, 4, \ 0 < Q^2 < 0.4 \ GeV^2$$

Low-order conformal polynomials: summary

- \circ With coefficients from Q^2 = 0 derivatives/time moments
 - * Quadratic/cubic $w(Q^2)$: sub-1% systematic error on $a_{\mu}^{LO,HVP}[0 < Q^2 < Q_{match}^2]$ for Q_{match}^2 up to ~ 0.15 GeV^2 /well beyond 0.2 GeV^2
 - * Disadvantage c.f. Pades: no underlying theorem ensuring continuing improved convergence with increasing order at low order
- ALTERNATE IMPLEMENTATION: P(w) coefficients, c_k , determinable from fit to sufficiently accurate data in interval 0.1 to 0.2 GeV^2 [GMP14]

- Supplemented NNLO ChPT
 - \triangleright Supplemented NNLO ChPT c.f. dispersive model $0 < Q^2 < 0.2 \ GeV^2$

- \triangleright Sub-1% $a_{\mu}^{LO,HVP}$ [0 < $Q^2 < Q_{match}^2$] systematic error up to and somewhat above $Q_{match}^2 \sim 0.1 \ GeV^2$, but deteriorates above this
- ▷ Alternative strategy of fitting required LECs in interval $0.1 - 0.2 \ GeV^2$ not successful at the sub-1% level (additional curvature contributions beyond phenomenological NNNLO CQ^4 term)
- \triangleright ChPT thus usable primarily with time-moments, and as cross-check on other low- Q^2 methods

A FEW PRELIMINARY RESULTS

• Excellent hybrid stability with Q^2_{match} for both light, strange (connected) contributions, e.g., the light case:

- Strange contribution from RBC/UKQCD DWF data, via HPQCD time-moments
 - \triangleright Convergence already by [1, 1] Pade, as seen by HPQCD
 - Pade poles lie on cut as required (self-consistency check)
 - ▷ "Alternation" of [1,0], [1,1], [2,1], [2,2] Pades as required

$$\triangleright \left[a_{\mu}^{LO,HVP}\right]_{s} = (52.4 \pm 2.1) \times 10^{-10}, \text{ c.f. } (53.4 \pm 0.6) \times 10^{-10} \text{ HPQCD}, (53 \pm 3) \times 10^{-10} \text{ ETM}$$

- Preliminary results on the light contribution, RBC/UKQCD DWF data, HPQCD moments
 - ▷ Errors much larger than for strange
 - ▷ Spurious poles for [2,2] Pade
 - \triangleright Poles properly on cut for [1,1], [2,1] Pades
 - "Alternation" of lower [1,0], [1,1], [2,1] Pades as required
 - ▷ Discrete-difference moments also being studied

 VERY PRELIMINARY time-moment results c.f. two-vector-meson ansatz fits to same data [Boyle, Del Debbio, Kerrane, Zanotti PRD85 (2012) 074504]

CONCLUSIONS

- Fitting over sizable Q^2 range VERY dangerous for $a_{\mu}^{LO,HVP}$
- Hybrid strategy viable with low-order Pades, low-degree conformal polynomials, supplemented NNLO ChPT for $low-Q^2$ contributions
- Excellent stability of hybrid evaluation wrt Q_{match}^2
- No blowing up of errors in hybrid strategy

BACKUP SLIDES

 $a_{\mu}^{LO,HVP}[0 < Q^2 < Q^2_{match}]$ systematic error vs. Q^2_{match} for low-order Pades

•
$$0 < Q_{match}^2 < 0.2 \ GeV^2$$

•
$$0 < Q_{match}^2 < 2 \ GeV^2$$

