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OUTLINE

• Low-Q2 systematics problem for typical fits to lattice

polarization function data

• Reliable forms for low-Q2 fitting and a hybrid strategy

for a
LO,HV P
µ

• Exploratory implementation on existing RBC/UKQCD

ensembles with low-Q2 contributions via, e.g., the HPQCD

time-moment approach



GENERALITIES

• Π̂(Q2) ≡ Π(Q2)−Π(0), the subtracted EM current po-

larization function

• a
LO,HV P
µ from Euclidean Q2 integral representation

aLO,HVP
µ = −4α2

∫ ∞

0
dQ2 f(Q2) Π̂(Q2)

f(Q2) = m2
µQ

2Z3(Q2)
1−Q2Z(Q2)

1 +m2
µQ

2Z2(Q2)

Z(Q2) =

(

√

(Q2)2 +4m2
µQ

2 −Q2
)

/(2m2
µQ

2)

• NOTE: Peaked at much lower Q2 than analogous dis-

persive representation as weighted integral over bare

e+e− → hadrons cross-sections



• The once-subtracted dispersion relation for Π(Q2)

Π̂(Q2) = −Q2
∫ ∞

4m2
π

ds
ρ(s)

s(s+Q2)
,

⊲ ρ(s) ≥ 0 ⇒ all derivatives monotonic in Q2; smaller

curvature for Π̂ at large Q2 than small Q2

⊲ ⇒ potential systematic bias at low-Q2 when fitting

lattice data with many low-error large-Q2 points and

only a few large-error low-Q2 points

⊲ High precision hadronic τ decay data for ρI=1(s)

allows construction of extremely physical “dispersive

model” for Π̂I=1(Q2), quantitative examination of

systematics for any given fit strategy [GMP13]



More on the low-Q2 systematic problem

• Integrand peaked at very low Q2 (∼ m2
µ/4 for I=1)

• Sparse low-Q2 coverage, especially with PBCs
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• Is the in-principle problem a real one?

∗ E.g., good quality VMD+polynomial fit to fake data

(underlying dispersive model + MILC covariance),

fit interval 0 < Q2 < 1 GeV 2
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∗ The resulting integrand in the low-Q2 region, c.f.

the underlying dispersive model version
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∗ Problem worsens with more high-Q2 fit points

◦ Eg., [2,2] ΠI=1(Q2) Pade fit: pull = 0.5 for 0 →
1 GeV 2 fit window → 4 for 0 → 1.5 GeV 2

◦ Similarly for [3,2] Pade fit: pull = 0.5 on 0 →
1 GeV 2 → 1.8 on 0 → 1.5 GeV 2

• Lessons

◦ Better focus on low-Q2 region needed

◦ Systematic problem makes testing proposed fit strate-

gies, e.g., using dispersive model, crucial



LOW-Q2 CONTRIBUTIONS AND A HYBRID

STRATEGY

• Accumulation of a
LO,HV P
µ [0 ≤ Q2 ≤ Q2

max] ≡ a
LO,HV P
µ [Q2

max]
wrt Q2

max
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• More than 80% of a
LO,HV P
µ accumulated below Q2 =

0.1 GeV 2, more than 90% below Q2 = 0.2 GeV 2

⊲ Required tolerance on < 10−20% contribution above

∼ 0.1− 0.2 GeV 2 << on low-Q2 contribution

⊲ bulk of contribution from low enough Q2 that low-

order Pade, conformal variable polynomial, ChPT

representations likely to suffice

• Suggests hybrid strategy: low-Q2 contributions by low-

Q2-tailored (Pade, conformal polynomial, ChPT) rep-

resentations, high-Q2 by direct numerical integration



• Direct numerical integration above Q2 ∼ 0.1−0.2 GeV 2

⊲ Trapezoid rule errors for Q2 > Q2
min data

◦ Statistical

◦ Systematic (trapezoid rule approximation)

◦ Uncertainty on Π(0) entering Π̂(Q2)

⊲ Investigate using fake data from I = 1 dispersive

model, MILC 643 × 144 a ∼ 0.06 fm covariances

⊲ FIGURES: errors on a
LO,HV P
µ [Q2 > Q2

min], as a frac-

tion of a
LO,HV P
µ



Systematic and statistical errors on the trape-

zoid rule evaluation as fractions of a
LO,HV P
µ
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Impact of an uncertainty δΠI=1(0) = 0.001 on

â
LO,HVP
µ [Q2 > Q2

min]/a
LO,HV P
µ
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• Successful strategies for low-Q2 a
LO,HV P
µ [Q2 < Q2

match]

⊲ Low-order Pades [Aubin, Blum, Golterman, Peris,

PRD86 (2012) 054509; HPQCD, 1403.1778]

⊲ Low-degree polynomials in the conformal variable,

w(z), z = Q2

4m2
π
, w(z) = 1−

√
1+z

1+
√
1+z

⊲ Appropriately supplemented NNLO ChPT

• Will illustrate fixing parameters from derivatives of dis-

persive ΠI=1(Q2) wrt Q2 at Q2 = 0 [GMP14] (poten-

tially determinable on lattice via HPQCD time-moment

strategy or discrete-difference version thereof)



• Low-order Pades

⊲ How low is low?

Pades c.f. dispersive model 0 < Q2 < 2 GeV 2

0 0.5 1 1.5
Q

2
 [GeV

2
]

-0.4

-0.3

-0.2

-0.1

0

Π̂
I=

1 (Q
2 )

Exact dispersive result
[1,0]

H
 Padé

[1,1]
H
 Padé

[2,1]
H
 Padé

[2,2]
H
 Padé



Pades c.f. dispersive model 0 < Q2 < 0.4 GeV 2
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⊲ Low-order Pades: summary

◦ With coefficients from Q2 = 0 derivatives/time

moments

∗ [1,1] Pade (up to t6 moments only) yields sub-

1% a
LO,HV P
µ [0 < Q2 < Q2

match] systematic error

up to Q2
match > 0.2 GeV 2

∗ [2,2] Pade (up to t10 moment) needed for sub-

1% systematic for Q2
match ∼ 2 GeV 2 and above

◦ ALTERNATE IMPLEMENTATION: Pade coeffi-

cients also determinable from fit to sufficiently ac-

curate data in interval 0.1 to 0.2 GeV 2 [GMP14]



• Low-degree polynomials in w

⊲ How low is low?

P(w) =
∑N

k=1 ck w
k c.f. dispersive model,

N = 1, · · · ,4, 0 < Q2 < 0.4 GeV 2
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⊲ Low-order conformal polynomials: summary

◦ With coefficients from Q2 = 0 derivatives/time

moments

∗ Quadratic/cubic w(Q2): sub-1% systematic er-

ror on a
LO,HV P
µ [0 < Q2 < Q2

match] for Q2
match up

to ∼ 0.15 GeV 2/well beyond 0.2 GeV 2

∗ Disadvantage c.f. Pades: no underlying theorem

ensuring continuing improved convergence with

increasing order at low order

◦ ALTERNATE IMPLEMENTATION: P(w) coeffi-

cients, ck, determinable from fit to sufficiently ac-

curate data in interval 0.1 to 0.2 GeV 2 [GMP14]



• Supplemented NNLO ChPT

⊲ Supplemented NNLO ChPT c.f. dispersive model

0 < Q2 < 0.2 GeV 2
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⊲ Sub-1% a
LO,HV P
µ [0 < Q2 < Q2

match] systematic error

up to and somewhat above Q2
match ∼ 0.1 GeV 2, but

deteriorates above this

⊲ Alternative strategy of fitting required LECs in in-

terval 0.1 − 0.2 GeV 2 not successful at the sub-

1% level (additional curvature contributions beyond

phenomenological NNNLO CQ4 term)

⊲ ChPT thus usable primarily with time-moments, and

as cross-check on other low-Q2 methods



A FEW PRELIMINARY RESULTS

• Excellent hybrid stability with Q2
match for both light,

strange (connected) contributions, e.g., the light case:
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• Strange contribution from RBC/UKQCD DWF data,

via HPQCD time-moments

⊲ Convergence already by [1,1] Pade, as seen by HPQCD

⊲ Pade poles lie on cut as required (self-consistency

check)

⊲ “Alternation” of [1,0], [1,1], [2,1], [2,2] Pades as

required

⊲

[

a
LO,HV P
µ

]

s
= (52.4±2.1)×10−10, c.f. (53.4±0.6)×

10−10 HPQCD, (53± 3)× 10−10 ETM



• Preliminary results on the light contribution, RBC/UKQCD

DWF data, HPQCD moments

⊲ Errors much larger than for strange

⊲ Spurious poles for [2,2] Pade

⊲ Poles properly on cut for [1,1], [2,1] Pades

⊲ “Alternation” of lower [1,0], [1,1], [2,1] Pades as

required

⊲ Discrete-difference moments also being studied



⊲ VERY PRELIMINARY time-moment results c.f.

two-vector-meson ansatz fits to same data [Boyle,

Del Debbio, Kerrane, Zanotti PRD85 (2012) 074504]
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CONCLUSIONS

• Fitting over sizable Q2 range VERY dangerous for a
LO,HV P
µ

• Hybrid strategy viable with low-order Pades, low-degree

conformal polynomials, supplemented NNLO ChPT for

low-Q2 contributions

• Excellent stability of hybrid evaluation wrt Q2
match

• No blowing up of errors in hybrid strategy



BACKUP SLIDES

a
LO,HV P
µ [0 < Q2 < Q2

match] systematic error vs. Q2
match

for low-order Pades

• 0 < Q2
match < 0.2 GeV 2
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• 0 < Q2
match < 2 GeV 2
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