Improved gradient flow for step scaling function and scale setting

Anna Hasenfratz
University of Colorado Boulder

Lattice 2014, New York

In collaboration with
A. Cheng, Y. Liu, G. Petropoulos, D. Schaich, A. Veernala
The gradient flow coupling
Step Scaling
Scale setting
Perturbative improvement
Conclusion

SPOILER

β function, 4 flavors

\[
\left(g^2(sL) - g^2(L)\right)/\log(s^2)
\]

- **4 flavors**
- non-perturbative
- 2-loop
- 1-loop

8 flavors

- Preliminary
- 2-loop
- 1-loop

- **8 flavor**
- non-perturbative

- **Scale setting 2+1+1 HISQ**

- **g_{IRFP} in 12 flavors**

- \[c = 0.2, \tau = 0.04\]

\[
g^2(L) = \frac{a^2}{t_0}
\]

- \[\tau_0 = -0.18\]

- m1
- m2
- m3
The gradient flow coupling

Popular new running coupling

\[g_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{N} t^2 \langle E(t) \rangle, \quad E(t) = -\frac{1}{2} G_{\mu \nu}^2 \]

- easy to measure with small systematical errors
- appropriate both for scale setting and step scaling function
- but \(g_{GF}^2(\mu, a) \) can have significant cut-off corrections
The gradient flow coupling

Popular new running coupling

$$g_{GF}^2\left(\mu = \frac{1}{\sqrt{8t}} \right) = \frac{1}{N}t^2\langle E(t) \rangle, \quad E(t) = -\frac{1}{2}G_{\mu\nu}^2$$

- easy to measure with small systematical errors
- appropriate both for scale setting and step scaling function
- but $g_{GF}^2(\mu, a)$ can have significant cut-off corrections

t-shift improved $\tilde{g}_{GF}^2(\mu)$: simple modification that can remove cut-off effects (1404.0984 and in prep)
T-SHIFT IMPROVED GRADIENT FLOW

Define the t-shifted coupling as

\[\tilde{g}^2_{GF}(\mu = \frac{1}{\sqrt{8t}}, a) = \frac{1}{\mathcal{N}} t^2 \langle E(t + a^2 \tau_0) \rangle, \quad a^2 \tau_0 \ll t \]

In the continuum limit \(a \to 0 \) limit \(\tilde{g}^2_{GF}(\mu) \to g^2_{GF}(\mu) \)
T-SHIFT IMPROVED GRADIENT FLOW

Define the t-shifted coupling as

\[\tilde{g}_{GF}^2(\mu = \frac{1}{\sqrt{8t}}, a) = \frac{1}{N} t^2 \langle E(t + a^2 \tau_0) \rangle, \quad a^2 \tau_0 \ll t \]

In the continuum \(a \to 0 \) limit \(\tilde{g}_{GF}^2(\mu) \to g_{GF}^2(\mu) \)

Why would this help? Three ways of looking at it:

1. \(\langle E(t) \rangle \to \langle E(t + a^2 \tau_0) \rangle \)
 replaces \(E(t) \) with a smeared operator
 \(\to \) smearing tends to remove lattice artifacts
2. \(t + a^2 \tau_0 \to t \) removes initial flow time artifacts
3. The shift can remove \(O(a^2) \) terms
T-SHIFT IMPROVED GRADIENT FLOW

Expand the t-shifted coupling

\[\tilde{g}_{GF}^2(\mu = \frac{1}{\sqrt{8t}}, a) = \frac{1}{N} t^2 \langle E(t + a^2 \tau_0) \rangle, \quad a^2 \tau_0 \ll t \]

in \(a^2 \tau_0 \)

\[\tilde{g}_{GF}^2(\mu, a) = g_{GF}^2(\mu, a) + a^2 \tau_0 \frac{d}{dt} \langle t^2 \langle E(t) \rangle \rangle + \ldots \]

\[g_{GF}^2(\mu, a) = g_{GF}^2(\mu) + a^2 C + \ldots \]

If \(C = -\tau_0 \frac{d}{dt} \langle t^2 \langle E(t) \rangle \rangle \) the \(O(a^2) \) corrections are removed

\[\tilde{g}_{GF}^2(\mu, a) = g_{GF}^2(\mu) + O(a^4, a^2 \log^n(a)) \]
Yet an other way to look at the t-shifted coupling

\[\tilde{g}^2_{GF}(t, a) = \frac{1}{\mathcal{N}} t^2 \langle E(t + a^2 \tau_0) \rangle = g^2_{GF}(t + a^2 \tau_0)(1 + \frac{a^2 \tau_0}{t})^{-2} \]

\((1 + a^2 \tau_0/t)^{-1}\) term gives tree-level corrections while

\[g^2_{GF}(t+a^2 \tau_0) = g^2_{GF}(t) + \frac{a^2 \tau_0}{t} t \frac{dg^2_{GF}}{dt} + \cdots = g^2_{GF}(t) + \frac{a^2 \tau_0}{t} b_0 g^4_{GF}(t) + \cdots \]

gives 1-loop corrections. If

- the tree level corrections are small
- or removed analytically

the \(\tau_0\) shift can give 1-loop improvement!
T-SHIFT IMPROVED GRADIENT FLOW

\[\tilde{g}_{GF}^{2}(\mu = \frac{1}{\sqrt{8t}}, a) = \frac{1}{N} t^2 \langle E(t + a^2 \tau_0) \rangle, \]

- For full \(O(a^2) \) improvement \(\tau_{opt} \) must depend on both the bare and renormalized couplings
 → might mean no predictive power
- If the tree-level corrections are small, \(\tau_0 = \text{const} \) can give 1-loop improvement
- Every \(\tau_0 \) value is correct - some are just better
 → comparing different \(\tau_0 \) values is a good consistency check
The gradient flow coupling

Step Scaling

Scale setting

Perturbative improvement

Conclusion

\(N_f = 4 \)

Test case: step scaling function with 4 flavor staggered fermions

- Set \(\mu = (cL)^{-1}, c = 0.25 \)
- Define discrete \(\beta \) function with scale change \(s = 1.5 \)

\[
\beta_{\text{lat}}(g^2_{\text{GF}}; s; a) = \frac{\tilde{g}^2_{\text{GF}}(L; a) - \tilde{g}^2_{\text{GF}}(sL; a)}{\log(s^2)}
\]

Continuum extrapolation:

\(g^2(L) = 2.2 \)

Cut-off corrections with our action are small

All \(\tau_0 \) shifts predict the same continuum value \(\rightarrow \) consistency check!
$N_f = 4$

Tree-level perturbative (1406.0827) vs t-shift improvement:

$$g^2_{GF} = 2.2$$

PT corrections remove $O(a^2)$ terms,
$N_f = 4$

Tree-level perturbative (1406.0827) vs t-shift improvement:

$g_{GF}^2 = 2.2$

$g_{GF}^2 = 4.8$

PT corrections remove $O(a^2)$ terms,

at stronger coupling PT overshoots

The continuum extrapolations both for improved and unimproved gradient flow are consistent
$N_f = 4$

Discrete β function

$$\frac{(g^2(sL) - g^2(L))/\log(s^2)}{g_c}$$

- **4 flavors**
- non-perturbative
- 2-loop
- 1-loop

Conclusion

Close agreement with 2-loop perturbative value

$$\tau_0 = -0.02 - 0.0$$ in the investigated g_{GF}^2 range
$N_f = 8$

Expected to be chirally broken but very strongly coupled

Very different from 2-loop perturbative

$\tau_0 = 0.0 - 0.04$ with 1x nHYP
$\tau_0 = 0.12 - 0.20$ with 2x nHYP
t-shift optimization is essential
\[g_{GF}^2(L) \] versus \(\beta \) bare coupling shows crossings
- does that imply an IRFP?

Only if the crossings survive the continuum limit!
\[g^2_{GF}(L) \text{ versus } \beta \text{ bare coupling shows crossings} \]
- does that imply an IRFP?

Only if the crossings survive the continuum limit!
$N_f = 12$

Zoom in:

This is special: other published step scaling function studies of $N_f = 12$ do not see crossings, they identify an IRFP by extrapolating from the weak coupling side.
The gradient flow coupling

$N_f = 12$

Take the continuum limit of the crossings:

$\langle L \rangle = \langle sL \rangle \implies \langle L; s \rangle = \langle \rangle$

c=0.2, s=2

optimization is essential,

$\tau_{\text{opt}} \approx 0.04$
\(N_f = 12 \)

Combine \(s = 4/3, 3/2 \) and 2 with common \(\tau_0 = 0.04 \)

All scale factors predict \(g_\star^2(L) \approx 6.2 \) with no (apparent) dependence on the lattice spacing

Extrapolating \(g_\star^2(L) \) is more reliable than the \(\beta \) function
$N_f = 12$

Results are similar with $c = 0.25, 0.3$ Larger c gives stronger $g_\star^2(L)$ and has increased statistical errors, but t-shift improvement works the same.

$c = 0.25, s = 2$

$\tau_{opt} \approx 0.06$

Preliminary
The modified gradient flow coupling \tilde{g}_{GF}^2 can be used to define improved t_0, ω_0 scales

$$t^2 \langle E(t + a^2 \tau_0) \rangle|_{t=t_0} = 0.3$$
Optimizing Scale Setting

The modified gradient flow coupling \tilde{g}_{GF}^2 can be used to define improved t_0, w_0 scales

$$t^2\langle E(t + a^2\tau_0) \rangle|_{t=t_0} = 0.3$$

If \tilde{g}_{GF}^2 has no lattice artifacts, the definition

$$t^2\langle E(t + a^2\tau_0) \rangle|_{t=t_1} = 0.35$$

will predict a consistent scale, i.e. t_0/t_1 is independent of the lattice spacing - just like r_0 and r_1

(Assuming finite volume effects can be neglected.)
HISQ 2+1+1

Test: Symanzik flow data on HISQ 2+1+1 configurations \(^1\)
\[\sqrt{t_0/t_1} \text{ vs } a^2/t_0 \text{ for } m_s/m_l = 5, 10, 27 \]

without t-shift

Quadratic + quartic \(a^2\) dependence?

\(^1\)Thanks N. Brown for sharing the MILC gradient flow data
HISQ 2+1+1

Test: Symanzik flow data on HISQ 2+1+1 configurations

\[\sqrt{t_0/t_1} \text{ vs } a^2/t_0 \text{ for } m_s/m_l = 5, 10, 27 \]

\[\tau_0 = 0.0 \]

\[\tau_0 = -0.18 \]

Quadratic + quartic \(a^2 \) dependence?

The coarsest \(a \approx 0.15 \text{fm} \) set is (probably) not in the \(O(a^2) \) scaling regime!

\[^1 \text{Thanks N. Brown for sharing the MILC gradient flow data} \]
HISQ 2+1+1

There is nothing special about t_0 or t_1: \tilde{g}^2_{GF} vs t/t_0 should be independent of the lattice spacing if there are no cut-off effects 2

$$\tau_0 = 0.0$$

$$\tau_0 = -0.18$$

A: $a \approx 0.15\text{fm}$; B: $a \approx 0.12\text{fm}$; C: $a \approx 0.06\text{fm}$; D: $a \approx 0.06\text{fm}$;

2Assuming t is large to avoid gradient flow integration artifacts but small enough to minimize finite volume effects
The gradient flow coupling
Step Scaling
Scale setting
Perturbative improvement
Conclusion

HISQ 2+1+1

Compare t_0 and r_1:

- $\tau_0 = 0.0$
- $\tau_0 = -0.18$

Just like before:
- without t-shift improvement lattice artifacts mask that the coarsest set is not in the $O(a^2)$ scaling regime
- With t-shift the lattice scale is predicted better than 1% with τ_{opt} predicted using t_0/t_1
Perturbative vs T-shift Improvement

How does tree-level perturbative improvement compare with t-shift improvement?

- For the HISQ action tree-level perturbative improvement helps large g^2, t region but not small.
- This could be different for other actions
CONCLUSION

t-shift gradient flow improvement is a simple yet powerful method

- It is easy to implement and can give 1-loop improvement
- In step scaling function studies extrapolation to the continuum limit is possible even at strong running coupling
- In scale setting the optimal τ_0 parameter can be found by comparing two configuration sets
- t-shift improved coupling can reveal non $O(a^2)$ scaling violations that are hidden otherwise

Application for walking coupling in $N_f = 4 + 8$ flavor system check out the poster by O. Witzel