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SPOILER
β function, 4 flavors

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

(g
2 (s

L)
−g

2 (L
))
/l

og
(s

2 )

g2
c

4 flavors

non-perturbative
2-loop
1-loop

8 flavors

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

(g
2 (s

L)
−g

2 (L
))
/l

og
(s

2 )

g2
c

8 flavor

Preliminary

non-perturbative
2-loop
1-loop

g2
IRFP in 12 flavors

2

3

4

5

6

7

8

9

10

0 1/242 1/1821/162 1/122

g2 ∗(
L)

(a/L)2

c = 0.2, τ = 0.04

s=4/3
s=3/2

s=2

Scale setting 2+1+1 HISQ

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0 0.2 0.4 0.6 0.8 1 1.2

√ t 0
/r

1

a2/t0

τ0 = −0.18
m1
m2
m3



The gradient flow coupling Step Scaling Scale setting Perturbative improvement Conclusion

THE GRADIENT FLOW COUPLING

Popular new running coupling

g2
GF

(
µ =

1√
8t

)
=

1
N

t2〈E(t)〉, E(t) = −1
2

G2
µν

I easy to measure with small systematical errors
I appropriate both for scale setting and step scaling function
I but g2

GF(µ, a) can have significant cut-off corrections

t-shift improved g̃2
GF(µ) : simple modification that can remove

cut-off effects (1404.0984 and in prep)
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T-SHIFT IMPROVED GRADIENT FLOW

Define the t-shifted coupling as

g̃2
GF
(
µ =

1√
8t
, a
)
=

1
N

t2〈E(t + a2τ0)〉, a2τ0 � t

In the continuum a→ 0 limit g̃2
GF(µ)→ g2

GF(µ)

Why would this help? Three ways of looking at it:
1. 〈E(t)〉 → 〈E(t + a2τ0)〉

replaces E(t) with a smeared operator
→ smearing tends to remove lattice artifacts

2. t + a2τ0 → t removes initial flow time artifacts
3. The shift can remove O(a2) terms
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T-SHIFT IMPROVED GRADIENT FLOW

Expand the t-shifted coupling

g̃2
GF
(
µ =

1√
8t
, a
)
=

1
N

t2〈E(t + a2τ0)〉, a2τ0 � t

in a2τ0

g̃2
GF(µ, a) = g2

GF(µ, a) + a2τ0
d
dt
(
t2〈E(t)〉

)
+ . . .

g2
GF(µ, a) = g2

GF(µ) + a2C + . . .

If C = −τ0
d
dt

(
t2〈E(t)〉

)
the O(a2) corrections are removed

g̃2
GF(µ, a) = g2

GF(µ) +O(a4, a2logn(a))
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T-SHIFT IMPROVED GRADIENT FLOW

Yet an other way to look at the t-shifted coupling

g̃2
GF(t, a) =

1
N

t2〈E(t + a2τ0)〉 = g2
GF
(
t + a2τ0

)(
1 +

a2τ0

t
)−2

(1 + a2τ0/t)−1 term gives tree-level corrections while

g2
GF(t+a2τ0) = g2

GF(t)+
a2τ0

t
t
dg2

GF
dt

+· · · = g2
GF(t)+

a2τ0

t
b0g4

GF(t)+. . .

gives 1-loop corrections. If
I the tree level corrections are small
I or removed analytically

the τ0 shift can give 1-loop improvement!
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T-SHIFT IMPROVED GRADIENT FLOW

g̃2
GF
(
µ =

1√
8t
, a
)
=

1
N

t2〈E(t + a2τ0)〉,

I For full O(a2) improvement τopt must depend on both the
bare and renormalized couplings
→ might mean no predictive power

I If the tree-level corrections are small, τ0 = const can give
1-loop improvement

I Every τ0 value is correct - some are just better
→ comparing different τ0 values is a good consistency check
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Nf = 4
Test case: step scaling function with 4 flavor staggered fermions

I Set µ = (cL)−1, c = 0.25
I Define discrete β function with scale change s = 1.5

βlat(g2
GF; s; a) =

g̃2
GF(L; a)− g̃2

GF(sL; a)
log(s2)

Continuum exptrapolation:
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Nf = 4
Tree-level perturbative (1406.0827) vs t-shift improvement:

g2
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at stronger coupling PT overshoots

The continuum extrapolations both for improved and
unimproved gradient flow are consistent
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Nf = 4
Tree-level perturbative (1406.0827) vs t-shift improvement:
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Nf = 4

Discrete β function
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Nf = 8

Expected to be chirally broken but very strongly coupled
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Very different from
2-loop perturbative

τ0 = 0.0 – 0.04 with
1x nHYP
τ0 = 0.12 – 0.20 with
2x nHYP
t-shift optimization is
essential
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Nf = 12

g2
GF(L) versus β bare coupling shows crossings

- does that imply an IRFP?
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Only if the crossings
survive the
continuum limit!
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Nf = 12

Zoom in:
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This is special: other published step scaling function studies of
Nf = 12 do not see crossings, they identify an IRFP by
extrapolating from the weak coupling side.
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Nf = 12

Take the continuum limit of the crossings:
g2

GF(L) = g2
GF(sL) =⇒ g2

?(L; s) = g2
GF(L)
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Nf = 12

Combine s = 4/3, 3/2 and 2 with common τ0 = 0.04
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Extrapolating g2
?(L) is more reliable than the β function
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Nf = 12

Results are similar with c = 0.25, 0.3 Larger c gives stronger
g2
?(L) and has increased statistical errors, but t-shift

improvement works the same
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OPTIMIZING SCALE SETTING

The modified gradient flow coupling g̃2
GF can be used to define

improved t0, w0 scales

t2〈E(t + a2τ0)〉|t=t0 = 0.3

If g̃2
GF has no lattice artifacts, the definition

t2〈E(t + a2τ0)〉|t=t1 = 0.35

will predict a consistent scale, i.e. t0/t1 is independent of the
lattice spacing - just like r0 and r1
(Assuming finite volume effects can be neglected.)
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HISQ 2+1+1

Test: Symanzik flow data on HISQ 2+1+1 configurations 1√
t0/t1 vs a2/t0 for ms/ml = 5, 10, 27

without t-shift
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The coarsest a ≈ 0.15fm set is
(probably) not in the O(a2)
scaling regime!

1Thanks N. Brown for sharing the MILC gradient flow data
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HISQ 2+1+1

There is nothing special about t0 or t1:
g̃2

GF vs t/t0 should be independent of the lattice spacing if there
are no cut-off effects 2
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A: a ≈ 0.15fm; B: a ≈ 0.12fm; C: a ≈ 0.06fm; D: a ≈ 0.06fm;

2Assuming t is large to avoid gradient flow integration artifacts but small
enough to minimize finite volume effects
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HISQ 2+1+1
Compare t0 and r1:

τ0 = 0.0
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Just like before:
I without t-shift improvement lattice artifacts mask that the

coarsest set is not in the O(a2) scaling regime
I With t-shift the lattice scale is predicted better than 1%

with τopt predicted using t0/t1
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PERTURBATIVE VS T-SHIFT IMPROVEMENT

How does tree-level perturbative improvement compare with
t-shift improvement?

perturbative
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I For the HISQ action tree-level perturbative improvement
helps large g2, t region but not small.

I This could be different for other actions
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CONCLUSION

t-shift gradient flow improvement is a simple yet powerful
method

I It is easy to implement and can give 1-loop improvement
I In step scaling function studies extrapolation to the

continuum limit is possible even at strong running
coupling

I In scale setting the optimal τ0 parameter can be found by
comparing two configuration sets

I t-shift improved coupling can reveal non O(a2) scaling
violations that are hidden otherwise

Application for walking coupling in Nf = 4 + 8 flavor system
check out the poster by O. Witzel
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