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Gradient flow & lattice artefacts

Flow equation:
0¢Bu(x,t) = D, Gyu(x, t), B,(x,0) = Au(x)

Many uses (Lischer '10-'14), in particular

@ Scale setting & definitions of finite volume running couplings,
all based on the action density observable

(E(t,x)), E(t,x) = —3tr{Gu(x,t)Gu(x, t)}

@ plenty of choice for lattice discretization of action, observable,
gradient flow.
o leading cutoff effects are O(a?) but can be quite large!

= use Symanzik O(a?) improvement to reduce the leading
effects; important e.g. for precision study of running coupling.



Anatomy of tree-level O(a?) effects in (E(t)) |
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@ A, «a: gauge fixing parameters for the action and flow
equation, respectively.

@ Observable, gradient flow and action characterized by kernels
Kuv(p) of "free lattice actions”:
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Anatomy of tree-level O(a?) effects in (E(t, x)) Il

Extend momentum integrals to infinity, then evaluate traces:
3¢ 2 [( 40 _ 4@ () _ g4l
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All momentum integrals can be easily evaluated:
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Anatomy of tree-level O(a?) effects in (E(t, x)) Il

(E(t,x)) = 3 + z (d(°) +d® 4+ d(f)> +0(a%)
’ 16722 t '
For each d-coeffcient we may choose Wilson-plaquette,
Lischer-Weisz or the clover kernel or combinations thereof. We

find the relation
d®) =3¢ = _34(°)

and
4, plaquette (pl),
d) — 4, (=—2% —32a) Lischer-Weisz (Iw),
—2 Clover (cl).

in agreement with Nogradi's calculation (cf. previous talk)



Anatomy of tree-level O(a?) effects in (E(t, x)) IV

o A single term d*°*'3? /t needs to be cancelled = many
possibilities, e.g. T-shift (cf. talk by A. Hasenfratz), linear
combinations of plaquette and clover observables, ...

o Naive expectation: O(a?) improvement obtained by using

o an O(a?) improved action, e.g. Liischer-Weisz (LW)
o the gradient of an O(a?) improved action for the flow, e.g
Lischer-Weisz (LW) flow (a.k.a. Symanzik flow) ;

o a discretized observable free of O(a?) effects; we consider 2
options:

@ E(t,x) from the LW action density, Eiw(t, x);
@ E(t,x) as a linear combination

4/3E.(t, x) — 1/3Ea(t, x).

o Result (for both definitions of the observable)

1
Jrotal — % #0 = incomplete O(az) improvement!



GF coupling in finite volume with twisted periodic b.c.’s

e fix the relation between flow time t and space-time volume L*
by choosing a value for ¢ = v/8t/L.

@ The trace algebra same as before, however: the numbers J, p,
become functions of ¢!

= more conditions for improvement: each coefficient must

vanish separately!

e Cannot be satisfied with LW /Symanzik type flow, need to be
more general: include bent rectangles/chairs with coefficient
¢ & define the Zeuthen flow

CoZ]., C1:—l/].2, C2:1/24

= complete tree-level O(a?) improvement!
@ We checked that the connected 2-point function

a* Y [E(t,x)E(s,y)) — (E(t,x))(E(s, ¥))]

is tree-level O(a?) improved.



Scaling test in pure SU(3) gauge theory

@ GF coupling with SF b.c.'s (Fritzsch & Ramos '13);
use only magnetic components, set xo = T /2, and T = L,

c= \/g/L
—3{tr Gu(x, 1) Ga(x, ) hy=1/2 = N(c, a/L)gér(L)
@ use various discretizations of the coupling, both with
N (c,a/L) and with N(c,0).

@ O(a) effects from boundaries are negligible at chosen
parameters.

@ Step-scaling functions at u = 2.6057 for lattice sizes
L/a=8,12,16,24 with scale factor s = 2

@ Observe strong reduction of lattice artefacts!



Scaling test in pure SU(3) gauge theory (preliminary)
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Scaling test in pure SU(3) gauge theory (preliminary)
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Question: did we correctly implement improvement a la Symanzik?



Symanzik O(a?) improvement of flow observables |

Following Liischer & Weisz: use 4 + 1 dimensional local theory:
o0
S = SulUi{a,c, ]+ 34/ dt a* Z tr <Lu(x, t)
0 X

X {(Ot Viu(x, 1)) Vi (x, t)T + 95 (g§51at[V]) })

Expectation (follows reasoning by M. Liischer in fermionic case):

e classical nature of the flow equation: expect no bulk O(a?)
counterterms.

@ Hence all O(a?) counterterms must be localized at the 4-d
boundary: look for d = 6 local fields, polynomial in the
fundamental fields and their derivatives.

@ The basis can be reduced by use of the flow equation!



Symanzik O(a?) improvement of flow observables Il

Candidate counterterms:

@ The same counterterms as for the usual 4-d action =
parameterize by an offset ¢; — ¢; + Acj, (i = 1,2, 3) of the
terms in the general 4-dimensional action.

@ New dimension 6 terms:

Q 0:tr{G,.(x,t) G (X, t)}Hi=o0,
Q tr{L,(x, t)0:B.(x, t)}|=o0,
@ tr {L,(x.£)D, Gyu(x. D)}Heo-

Use the flow equation:

/d4xattr{Gﬂl/GﬂV}}t:0: —4/d4x tr{DuGuVDPGPVHt:O

= modifies Ac,

@ last 2 terms related by flow equation = stay e.g. with the last
term only.



Symanzik O(a?) improvement of flow observables IlI

e The Ac; offsets cannot be arbitrary as this would ruin O(a?)
improvement of 4d observables!

@ The Acp term is the free parameter in the Liischer-Weisz
1-parameter family of on-shell improved theories.

@ Can choose Ac, = 0.

= Only a single counterterm remains, choose

/ d*x tr {L,(x, t)Dy Gyu(x, t)} =0

@ Previous analysis implies that this counterterm vanishes at
tree levell



Classical expansion of flow equation

o Lattice flow equation:
3% (e Vu(x, 1)) Viu(x, t)f = —Oxpu (ggSlat[V]) ;o Vu(x,0) = Upn(x)
o The O(a?) term for the LW flow has a simple structure
0B, = D,G,, — {5a°D’D,G,, + O(a%)

@ This suggests a simple modification of the lattice flow
equation (Zeuthen flow v2.0):

32 (at VH(Xv t)) V,u(Xv t)T = - (1 + %BQVZVM) ax,u (ggslat[v])

o This removes all O(a?) effects from the flow equation!

Q: How does the Zeuthen flow v1.0 compare to v2.0 (work in
progress)?



Conclusions

o Investigation of tree-level O(a?) effects in gradient flow
observables involving E(x, t).

@ Zeuthen flow: eliminates O(a?) tree-level effects from the flow
equation, in all cases considered.

@ Quenched scaling test: remaining cutoff effects very smalll

= complete solution for any flow observable?

o Symanzik O(a?) improvement in 4 + 1 dimensional set-up: a
single counterterm remains, vanishes at tree level.

o Classical expansion of flow equation and observables:

@ Classical O(a?) improvement of E(x, t) easily achieved.

@ Classical expansion of the flow equation suggests a
modification to the LW/Symanzik flow to remove all O(a?)
effects.

= expect: once classically O(a?) improved both the flow
observable and the flow equation are O(a?) improved to all
orders in the coupling g !



