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Gradient flow & lattice artefacts

Flow equation:

∂tBµ(x , t) = DνGνµ(x , t), Bµ(x , 0) = Aµ(x)

Many uses (Lüscher ’10–’14), in particular

Scale setting & definitions of finite volume running couplings,
all based on the action density observable

〈E (t, x)〉, E (t, x) = −1
2 tr {Gµν(x , t)Gµν(x , t)}

plenty of choice for lattice discretization of action, observable,
gradient flow.

leading cutoff effects are O(a2) but can be quite large!

⇒ use Symanzik O(a2) improvement to reduce the leading
effects; important e.g. for precision study of running coupling.



Anatomy of tree-level O(a2) effects in 〈E (t)〉 I

t2〈E (t, x)〉 = g2

∫ π/a

−π/a
d4p tr

[
K (o)
µν (p, 0)D̄µν(p, λ, α)

]
,

D̄µν(p, λ, α) = (e−tK
(f)(p,α))µρ

(
K (a)(p, λ)−1

)
ρσ

(e−tK
(f)(p,α))σν ,

λ, α: gauge fixing parameters for the action and flow
equation, respectively.

Observable, gradient flow and action characterized by kernels
Kµν(p) of ”free lattice actions”:

S (a,o,f) = 1
2

∫ π/a

−π/a
d4p Ab

µ(−p)K (a,o,f)
µν (p, λ)Ab

ν(p) + O(A3),

K (a,o,f)
µν (p, λ) = K cont

µν (p, λ) + a2R(a,o,f)
µν (p, λ) + O(a4)

K cont
µν (p, λ) = p2δµν + (λ− 1)pµpν



Anatomy of tree-level O(a2) effects in 〈E (t, x)〉 II

Extend momentum integrals to infinity, then evaluate traces:

〈E (t, x)〉 =
3g2

16π2t2

{
1 +

a2

t

[(
d
(o)
1 − d

(a)
1

)
J4,−2 +

(
d
(o)
2 − d

(a)
2

)
J2,0

+ d
(f)
1 J4,0 + d

(f)
2 J2,2

]}
where

Jn,m =
t(m+n)/2

∫
p e
−2tp2pnpm∫

p e
−2tp2 , pn

∣∣∣
n>0

=
∑
µ

pnµ, p−n = 1/pn

All momentum integrals can be easily evaluated:

J2,0 = 1, J2,2 = 3/2, J4,0 = 3/4, J4,−2 = 1/2



Anatomy of tree-level O(a2) effects in 〈E (t, x)〉 III

〈E (t, x)〉 =
3g2

16π2t2

{
1 +

a2

t

(
d (o) + d (a) + d (f)

)
+ O(a4)

}
.

For each d-coeffcient we may choose Wilson-plaquette,
Lüscher-Weisz or the clover kernel or combinations thereof. We
find the relation

d (f) = 3d (a) = −3d (o),

and

d (o) =


− 1

24 , plaquette (pl),
1
72 ,

(
= − 1

24 −
2
3c1
)

Lüscher-Weisz (lw),

− 5
24 , Clover (cl).

in agreement with Nogradi’s calculation (cf. previous talk)



Anatomy of tree-level O(a2) effects in 〈E (t, x)〉 IV

A single term d totala2/t needs to be cancelled ⇒ many
possibilities, e.g. τ -shift (cf. talk by A. Hasenfratz), linear
combinations of plaquette and clover observables, ...

Naive expectation: O(a2) improvement obtained by using

an O(a2) improved action, e.g. Lüscher-Weisz (LW)
the gradient of an O(a2) improved action for the flow, e.g
Lüscher-Weisz (LW) flow (a.k.a. Symanzik flow) ;
a discretized observable free of O(a2) effects; we consider 2
options:

1 E(t, x) from the LW action density, Elw(t, x);
2 E(t, x) as a linear combination

4/3Epl(t, x)− 1/3Ecl(t, x).

Result (for both definitions of the observable)

d total = − 1

24
6= 0 ⇒ incomplete O(a2) improvement!



GF coupling in finite volume with twisted periodic b.c.’s

fix the relation between flow time t and space-time volume L4

by choosing a value for c =
√

8t/L.

The trace algebra same as before, however: the numbers Jn,m
become functions of c!

⇒ more conditions for improvement: each coefficient must
vanish separately!

Cannot be satisfied with LW/Symanzik type flow, need to be
more general: include bent rectangles/chairs with coefficient
c2 & define the Zeuthen flow

c0 = 1, c1 = −1/12, c2 = 1/24

⇒ complete tree-level O(a2) improvement!

We checked that the connected 2-point function

a4
∑
x

[〈E (t, x)E (s, y)〉 − 〈E (t, x)〉〈E (s, y)〉]

is tree-level O(a2) improved.



Scaling test in pure SU(3) gauge theory

GF coupling with SF b.c.’s (Fritzsch & Ramos ’13);
use only magnetic components, set x0 = T/2, and T = L,
c =
√

8t/L

−1
2〈 trGkl(x , t)Gkl(x , t)〉|x0=T/2 = N (c , a/L)g2

GF(L)

use various discretizations of the coupling, both with
N (c , a/L) and with N (c , 0).

O(a) effects from boundaries are negligible at chosen
parameters.

Step-scaling functions at u = 2.6057 for lattice sizes
L/a = 8, 12, 16, 24 with scale factor s = 2

Observe strong reduction of lattice artefacts!



Scaling test in pure SU(3) gauge theory (preliminary)
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Scaling test in pure SU(3) gauge theory (preliminary)
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Question: did we correctly implement improvement à la Symanzik?



Symanzik O(a2) improvement of flow observables I

Following Lüscher & Weisz: use 4 + 1 dimensional local theory:

S = Slat[U; {c1, c2, c3}] + a4
∫ ∞
0

dt a4
∑
x

tr

(
Lµ(x , t)

×
{

(∂tVµ(x , t))Vµ(x , t)† + ∂x ,µ
(
g2
0Slat[V ]

)})
Expectation (follows reasoning by M. Lüscher in fermionic case):

classical nature of the flow equation: expect no bulk O(a2)
counterterms.

Hence all O(a2) counterterms must be localized at the 4-d
boundary: look for d = 6 local fields, polynomial in the
fundamental fields and their derivatives.

The basis can be reduced by use of the flow equation!



Symanzik O(a2) improvement of flow observables II

Candidate counterterms:

The same counterterms as for the usual 4-d action ⇒
parameterize by an offset ci → ci + ∆ci , (i = 1, 2, 3) of the
terms in the general 4-dimensional action.

New dimension 6 terms:
1 ∂t tr {Gµν(x , t)Gµν(x , t)}|t=0,
2 tr {Lµ(x , t)∂tBµ(x , t)}|t=0,
3 tr {Lµ(x , t)DνGνµ(x , t)}|t=0.

Use the flow equation:∫
d4x ∂t tr {GµνGµν}

∣∣
t=0

= −4

∫
d4x tr {DµGµνDρGρν}

∣∣
t=0

⇒ modifies ∆c2

last 2 terms related by flow equation ⇒ stay e.g. with the last
term only.



Symanzik O(a2) improvement of flow observables III

The ∆ci offsets cannot be arbitrary as this would ruin O(a2)
improvement of 4d observables!

The ∆c2 term is the free parameter in the Lüscher-Weisz
1-parameter family of on-shell improved theories.

Can choose ∆c2 = 0.

⇒ Only a single counterterm remains, choose∫
d4x tr {Lµ(x , t)DνGνµ(x , t)}|t=0

Previous analysis implies that this counterterm vanishes at
tree level!



Classical expansion of flow equation

Lattice flow equation:

a2 (∂tVµ(x , t))Vµ(x , t)† = −∂x ,µ
(
g2
0Slat[V ]

)
, Vµ(x , 0) = Uµ(x)

The O(a2) term for the LW flow has a simple structure

∂tBµ = DνGνµ − 1
12a

2D2
µDνGνµ + O(a3)

This suggests a simple modification of the lattice flow
equation (Zeuthen flow v2.0):

a2 (∂tVµ(x , t))Vµ(x , t)† = −
(
1 + 1

12a
2∇∗µ∇µ

)
∂x ,µ

(
g2
0Slat[V ]

)
This removes all O(a2) effects from the flow equation!

Q: How does the Zeuthen flow v1.0 compare to v2.0 (work in
progress)?



Conclusions

Investigation of tree-level O(a2) effects in gradient flow
observables involving E (x , t).

Zeuthen flow: eliminates O(a2) tree-level effects from the flow
equation, in all cases considered.

Quenched scaling test: remaining cutoff effects very small!

⇒ complete solution for any flow observable?

Symanzik O(a2) improvement in 4 + 1 dimensional set-up: a
single counterterm remains, vanishes at tree level.

Classical expansion of flow equation and observables:
1 Classical O(a2) improvement of E (x , t) easily achieved.
2 Classical expansion of the flow equation suggests a

modification to the LW/Symanzik flow to remove all O(a2)
effects.

⇒ expect: once classically O(a2) improved both the flow
observable and the flow equation are O(a2) improved to all
orders in the coupling g !


