The charmonium states $X(3872)\left(1^{++}\right)$and $Z_{c}(3900)\left(1^{+-}\right)$on HISQ lattices

The Fermilab Lattice and MILC Collaborations

Song-Haeng Lee, C. DeTar, D. Mohler, H. Na

presented by: C. DeTar, Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA

1. Motivation

As part of our ongoing study of charmonium levels, we are currently studying the $X\left(3872\right.$) and the $Z_{(}(3900)$ using clover charm quarks (Fermiab interpretation)
and HISQ light valence quarks on the MILC configurations with $2+1+1$ flavors of HISQ sea quarks. Here, we present results from a preliminary study.
-The $X(3872)$ state with $J^{P C}=1^{++}$is one of the better established mysterious charmonium states found in B-meson decays by both Belle $[1]$ and $\operatorname{CDF}[2]$ and studied with more precision by CDF $[3]$, DO $[4]$, BABAR $[5,6]$, Belle $[7]$ and LHCb $\left[8,9\right.$] It mass is remarkably close to the $D^{*} D$ threshold with $M(3872)-M\left(D^{0}\right)$ $M\left(D^{(*)}\right)=-0.30 \pm 0.40 \mathrm{MeV}$

- The $Z_{c}(3900) 1^{+-}$is a charged, isospin-one charmonium-like structure observed by the BESIII collaboration [10] as an intermediate resonance in an analysis of
$e^{+} e^{-}$annihilations into $J / \psi \pi^{+} \pi^{-}$at $\sqrt{s}=4260$ MeV. This observation has been confirmed by the Belle Collaboration [11] and by Xiao et al. using data from the CLEO-c detector [12]. As a charged charmonium-like structure, it must contain at least four quarks, and tetraquark and molecular interpretations have been suggested: see for example [13, 14] and [15].
- Previous lattice calculations with clover up, down, and charm quarks $[16]$ have
found evidence for the $X(X 872)$. Previous s lttice n temptsto find found evidence for the $X(3872)$. Previous latitice attempts to find a Z_{c} were unsuc cessful [17, 18]. However, recently, with ne.
al. report evidence for a Z_{c}^{+}-like state $[19]$.

2. Technical lattice challenges

- Managing a variational calculation with both open charm and excited closedcharm components.
- Choosing interpolating operators that couple well to these states.
- Extending variational methods to cover systems with staggered fermions.
- Managing hadron correlators that require all-to-all methods.

3. What is new here?

- HISQ fermions with lighter light quarks
- Larger box size. Important for weakly bound states.

4. Ensemble analyzed

- For this preliminary study we work with an ensemble of $16^{3} \times 48$ lattices with spacing, approximately 0.15 fm , with $2+1+1$ flavors of HISQ sea quarks (physical strange and charm sea quark masses an.
set to $1 / 5$ the strange quark mass). [20].
The clover (Fermilab) [211] charmed quark mass is tuned approximately to the ex perimental D_{s} mass (with the HISQ action for the strange quark.)

5. Staggered variational method

- A variational approach helps to determine multiple eigenvalues of the transfer matrix $[22,23,24]$. We extend the method to staggered fermions [25]. Define
$\left.C_{i j}(t)=\left\langle O_{i}(t)\right)_{j}(0)\right\rangle$
The usual spectral decomposition gives
$C_{i j}(t)=\sum_{n} s_{n}(t) z_{i n} z_{j 2}^{*} \frac{\exp \left(-E_{n} t\right)}{2 E_{n}}$.
where $s_{n}(t)=1$ or $-(-)^{t}$ for nonoscillating and oscillating states.
- In terms of a pseudo--transfer matrix T with eigenvalues $\pm \exp \left(-E_{n}\right)$
$C(t)=Z T^{t} g(2 M)^{-1} Z^{\dagger}$
where g is diagonal and $g_{n n}=1$ for nonoscillating states and -1 for oscillating states, and M is a diagonal matrix with $M_{n n}$
obtain the generalized eigenvalue problem
$C(t) V=C\left(t_{0}\right) V T^{t-t_{0}}$
- With a sufficiently complete interpolating operator basis, we get eigenvalues $\lambda_{n}\left(t, t_{0}\right)=s_{n}(t) \exp \left[-E_{n}\left(t-t_{0}\right)\right]$
In practice $\lambda_{n}\left(t, t_{0}\right)$ has contributions from higher states and often from oppositeparity states, so we fit to [26].
$\begin{aligned} \lambda_{n}\left(t, t_{0}\right) & =a \exp \left[-E_{n}\left(t-t_{0}\right)\right]+b \exp \left[-E_{n}^{\prime}\left(t-t_{0}\right)\right] \\ & -(-)^{t} c \exp \left[-\overline{E_{n}}\left(t-t_{0}\right)\right]-(-)^{t} d \exp \left[-\overline{E_{n}^{\prime}}(t-t)\right.\end{aligned}$

6. $X(3872)$ interpolating operators

- $c c$ Interpolating operators $\left(J^{P C}=1^{++}\right)$
- $D D^{*}$ interpolating operators $\left(J^{P C}=1^{++}\right)$
$(D D)(t, \boldsymbol{p}=0)=\left[D^{*}(t, \mathbf{0}) \bar{D}(t, \mathbf{0})-\bar{D}^{*}(t, \mathbf{0}) D(t, \mathbf{0})\right]+f_{I}\{u \leftrightarrow d\}$ $D D)(t, p=1)=\left[D^{*}(t,-1) D(t, 1)-D^{*}(t, 1) D(t,-1)\right.$
$\left.+D^{*}(t, 1) \bar{D}(t,-1)-\bar{D}^{*}(t,-1) D(t, 1)\right]$
$+f_{I}\{u \leftrightarrow d\}$
where, $f_{I}=+1$ for $I=0$ and $f_{I}=-1$ for $I=1$
Each charmed meson interpolating operator is given by
$D(t, \boldsymbol{p})=\sum_{x} e^{i p \cdot x} \overline{\underline{q}}(\boldsymbol{x}, t) \gamma_{5}(\boldsymbol{x}, t), D^{*}(t, \boldsymbol{p})=\sum_{x} e^{i p \cdot x} \boldsymbol{x}_{\bar{q}(\boldsymbol{x}, t)} \gamma_{i c}(\boldsymbol{x}$
Stochastic and smeared-stochastic sources

7. $X(3872)$ Diagrams

charm quark
light quark
Figure 1. $X(3872)$ Quark-line diagrams for the hadronic correlator matrix in this calculation. Weare not nincuiding harar quark anniniation, because itis expee
level of peecison, so we omit the second row in each panel above.
8. $X(3872)$ channel effective mass

Figure 2 . Effective masses from the lowest few eigenvalues in the style of Ref. [161. Fach panel shows the result of including a different set of interpolating operatros. The green lines
correpond to the energies of noninteracting $\bar{D}\left(p D^{*}(-p)\right.$ sattering states. The lower one correpond to the energies of non-interacting $\bar{D}(p) D^{*}(-p)$ satatering states. The lower one

Figure 3. Energy levels from the variational calculation in Mev expresed as a spliting

 panel: the unmixed $D(0) D^{D}(0)$ and $D(1) D^{x}(-1)$ states. The lower blue bar represents the $X(3852)$ with binding energy relative to the $D D^{*}$ t theshold of $13(6)$ MeV with our unphysical lattice parameters.
10. $Z_{c}(3900)$ diagrams

- Hadronic correlation matrix

$C(t)=($
Figure 4 . Diagrammatic representation of the hadronic correlation matrix for the Z_{c} (330)

11. $Z_{c}(3900)$ interpolating operators

- $c c$ Interpolating operators $[J / \psi$ and $\psi(2 S)]\left(J^{P C}=1^{--}\right)$

- $c c, \pi$ Interpolating operators $\left(J^{P C}=1^{+-}\right)$
$(c c, \pi)(t, \boldsymbol{p}=\mathbf{0})=c c(t, \mathbf{0}) \pi(t, \mathbf{0})$
$(c c, \pi)(t, p=1)=c(t,-1) \pi(t, 1)+c c(t, 1) \pi(t,-1)$
- $D D^{*}$ interpolating operators $\left(J^{P C}=1^{+-}\right.$
$(D D)(t, \boldsymbol{p}=\mathbf{0})=\left[D^{*}(t, \mathbf{0}) \bar{D}(t, \mathbf{0})+\bar{D}^{*}(t, \mathbf{0}) D(t, \mathbf{0})\right]-\{u \leftrightarrow d\}$ $(D D)(t, \boldsymbol{p}=1)=\left[D^{*}(t,-1) \stackrel{D}{D}(t, 1)+\bar{D}^{*}(t, 1) D(t,-1)\right]$ $\stackrel{+}{\substack{\left.D^{*}(t, 1) \bar{D}(t,-1)+\bar{D}^{*}(t,-1) D(t, 1)\right]}}$ ${ }_{-}^{+}\{u \leftrightarrow d\}$

12. $Z_{c}(3900)$ search results

- We see no evidence for a bound state here

13. Conclusions and Outlook

- This preliminary study on a single lattice ensemble with an unphysical light quark mass and box size $L=2.4 \mathrm{fm}$ finds a state consistent with the $X(3872)$, but not a
${ }^{Z_{c}}{ }^{\text {W }}$
- We are enlarging our interpolating operator basis.
- We plan a study at physical light quark masses and larger box size $(L=4.8 \mathrm{fm})$.

14. Acknowledgments

This work is supported by the US National Science Foundation and Department of Energy. Computations were done on US DOE LOCD facilities (FNAL clusters) and Energy. Computations were done on US DOE LQCD facilities (rNA
at the University of Utah Center for High Performance Computing.

References

[1] S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003) [arXiv:hep-ex/0309032]; [2] D. E. Acosta et al. [CDF II Collaboration], Phys. Rev. Lett. 93, 072001 (2004) [arXiv:hep
[3] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 103, 152001 (2009) [arXiv:0906.5218 [hepex]l.
$[4]$ V. M. A.
[4] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 93, 162002 (2004) [arXiv:hep-ex/0405004] [5] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 71, 071103 (2005) [arXiv:hep-ex/0406022]. [6] B. Auberte tal. [BABAR Collaboration], Phys. Rev. D 77, 111101 (2008) [arXiv:0803.2838 [hep-ex] [7]. Adachi et al. [Belle Collaboration], arxiv:0809. 1224 (hep-ex].
[8] R. Aaijet al. [LHCb Collaboration] Eur Phys. I C 72 1972 (2012).
[9] R. Aaij et al. [LHCb Collaboration], arXiv:1302.6269 [hep-ex]

Rev. Lett. 110, 252001 (2013) [arXiv:1303.5949 hep
[11] Z. Q. Liu etal. [Belle Collaboration], Phys. Rev. Lett. 110, 252002 (2013) [arXiv:1304.0121 [hep-ex]]. [12] T. Xiao, S. Dobbs, A. Tomaradze and K. K. Seth, Phys. Lett. B 727, 366 (2013) [arXiv:1304.3036 [hep-ex]].
[13] E. Braaten, arXiv:1305.6905 [hep-ph]
[14] E. Braaten, C. Langmack and D. H. Smith, Phys. Rev. Lett. 111, 162003 (2013). [arXiv:1402.0438
[15] E. Wilbring
[155 E. Wibring, H. -W. Hammer and U. -G. Meißner, Phys. Lett. B 726, 326 (2013) [arXiv:1304.2882
[hep-phl].
[16] S. Prelovsek and L. Leskovec, Phys. Rev. Lett. 111, 192001 (2013) [arXiv:1307.5172 [hep-lat]].
[17] S. Prelovsek and L. Leskovec, Phys. Lett. B 727, 172 (2013) [arXiv:1308.2097 [hep-lat]].
[18] Y. Chen, M. Gong, Y.--H. Leie N. NLiL. J. Liang, C. Liu, H. Liu and J.- -L. Liu et all, Phys. Rev. D 89,
094506 (2014) [arXiv:1403.1318 [hep-lat]].
[19] S. Prelovsek, C. B. Lang, L. Leskovec and D. Mohler, arXiv:1405.7623 [hep-lat].
[20] A. Bazavove etal. [MILC Collaboration], Phys. Rev. D 82,074501 (2010) [arXiv:1004.0342 [hep-lat]] ${ }^{[21]}$ A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, Phys. Rev. D 55,3933 (1997) [heplat/9604004].
[22] C. Michael, Nucl. Phys. B 259,58 (1985).
[22] C. Michael, Nucl. Phys. B B59, 58 (1985).
[23] M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990).
[24] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes and R. Sommer, JHEP 0904, 094 (2009) [arXiv:0902. 1265 [hep-lat]].
in preparation(2014).
[26] J. J. Dudek, R. G. Edwards, N. Mathur and D. G. Richards, Phys. Rev. D 77, 034501 (2008)
[arXiv:0707.4162 [hep-latt].

