Locally smeared operator product expansions

Chris Monahan

with Kostas Orginos

College of William and Mary/JLab

Operator mixing on the lattice

Rotational symmetry broken on the lattice to cubic symmetry

- 1. operators mix under renormalisation on the lattice
- 2. power divergent mixing between operators of different mass dimension

Operator mixing on the lattice

Rotational symmetry broken on the lattice to cubic symmetry

- 1. operators mix under renormalisation on the lattice
- 2. power divergent mixing between operators of different mass dimension

for example

twist expansion of parton distribution functions

(Twist-2) operator mixing on the lattice

Parton distribution functions reflect internal structure of nucleons

- defined on the light-cone
- Mellin moments of parton distribution functions
 ~ matrix elements of "twist" (dimension spin) operators
- twist-2 operators dominate in Bjorken limit

$$\overline{q}\,\gamma_{\{\mu_1}D_{\mu_2}\dots D_{\mu_n\}}q$$

• power divergent mixing

e.g.
$$\overline{q} \gamma_{\mu} D_{\nu} D_{\nu} q \sim \frac{1}{a^2} \overline{q} \gamma_{\mu} q$$

• limits lattice calculations to first four moments

Monahan and Orginos, poster at this conference

Operator mixing on the lattice

Rotational symmetry broken on the lattice to cubic symmetry

- 1. operators mix under renormalisation on the lattice
- 2. power divergent mixing between operators of different mass dimension

Smearing partially restores rotational symmetry reduces operator mixing Davoue

Davoudi and Savage, Phys. Rev. 86 (2012) 054505

Operator mixing on the lattice

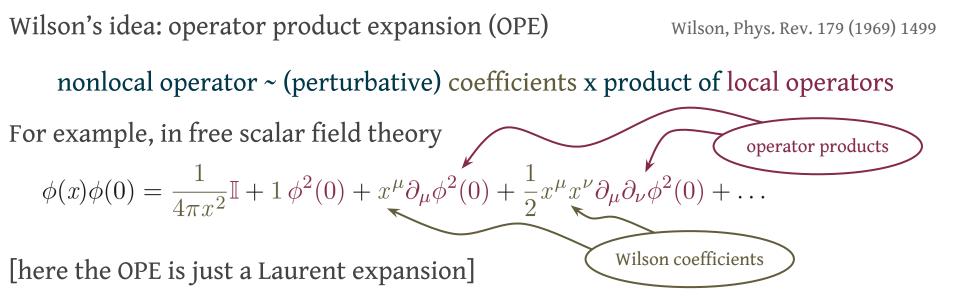
Aim:

systematically connect nonperturbative, smeared lattice calculations to continuum physics

Wilson's idea: operator product expansion (OPE) Wilson

Wilson, Phys. Rev. 179 (1969) 1499

nonlocal operator ~ (perturbative) coefficients x product of local operators



Wilson's idea: operator product expansion (OPE)

Wilson, Phys. Rev. 179 (1969) 1499

nonlocal operator ~ (perturbative) coefficients x product of local operators

For example, in free scalar field theory

$$\phi(x)\phi(0) = \frac{1}{4\pi x^2} \mathbb{I} + 1\,\phi^2(0) + x^\mu \partial_\mu \phi^2(0) + \frac{1}{2} x^\mu x^\nu \partial_\mu \partial_\nu \phi^2(0) + \dots$$

Interactions modify the Wilson coefficients

$$\phi(x)\phi(0) = \frac{1}{4\pi x^2} \left(1 + a_{\mathbb{I}} \log(x^2 \mu^2) \dots \right) \mathbb{I} + \left(1 + a_{\phi^2} \log(x^2 \mu^2) \dots \right) \phi^2(0) + \dots$$

... but not their leading-*x* behaviour (determined by operator mass dimension)

(Formally) convenient to separate leading-x behaviour

$$\phi(x)\phi(0) = \frac{1}{x^2} c_{\mathbb{I}} \mathbb{I} + c_{\phi^2} \phi^2(0) + x^{\mu} c_{\partial_{\mu}\phi^2} \partial_{\mu} \phi^2(0) + x^{\mu} x^{\nu} c_{\partial_{\mu}\partial_{\nu}\phi^2} \partial_{\mu} \partial_{\nu} \phi^2(0) + \dots$$

In general
$$O(x) \xrightarrow{x \to 0} \sum d_{\nu} (x^2) e_{\nu} (x, \mu) O^{(k)}(0, \mu)$$

$$O(x) \stackrel{x \to 0}{\sim} \sum_{k} d_k(x^2) c_k(x,\mu) \mathcal{O}_R^{(k)}(0,\mu)$$

Operator relation - understood as acting in matrix element with *N* external fields

$$\langle \Omega | O(x) \tilde{\phi}(p_1) \dots \tilde{\phi}(p_N) | \Omega \rangle \stackrel{x \to 0}{\sim} \sum_k d_k(x^2) c_k(x,\mu) \langle \Omega | \mathcal{O}_R^{(k)}(0,\mu) \tilde{\phi}(p_1) \dots \tilde{\phi}(p_N) | \Omega \rangle$$

Smeared operator product expansion

Replace product of local operators with locally smeared operators (sOPE)

operator ~ (perturbative) coefficients x product of locally smeared operators

$$O(x) \stackrel{x \to 0}{\sim} \sum_{k} d_k(x^2) \overline{c}_k(x,\mu,\tau) \overline{\mathcal{O}}_R^{(k)}(0,\mu,\tau)$$

Smeared operator product expansion

Replace product of local operators with locally smeared operators

operator ~ (perturbative) coefficients x product of locally smeared operators

 $O(x) \stackrel{x \to 0}{\sim} \sum_{k} d_{k}(x^{2})\overline{c}_{k}(x,\mu,\tau)\overline{\mathcal{O}}_{R}^{(k)}(0,\mu,\tau)$ smearing scale τ bar denotes smeared coefficients and operators

Smearing implemented via gradient flow

- nonperturbative matrix elements finite in continuum limit at fixed physical τ
- partially restores rotational symmetry
- removes operator mixing due to hypercubic lattice symmetry

Smeared operator product expansion

For example, consider the two-point function with OPE

$$\phi(x)\phi(0) = \frac{1}{x^2} c_{\mathbb{I}} \mathbb{I} + c_{\phi^2} \phi^2(0) + \mathcal{O}(x)$$

which becomes

$$\phi(x)\phi(0) = \frac{1}{x^2}\overline{c}_{\mathbb{I}}\mathbb{I} + \overline{c}_{\phi^2}\overline{\phi}^2(\tau,0) + \mathcal{O}(x)$$

Gradient flow

Deterministic evolution of fields in "flow time" τ toward classical minimum

$$\frac{\partial}{\partial \tau} \overline{\phi}(\tau, x) = \partial^2 \overline{\phi}(\tau, x) \qquad \qquad \overline{\phi}(\tau = 0, x) = \phi(x)$$

Lüscher, Commun. Math. Phys. 293 (2010) 899

Exact solution possible with Dirichlet boundary conditions $\overline{\phi}(\tau, x) = e^{\tau \partial^2} \phi(x) \qquad \widetilde{\overline{\phi}}(\tau, p) = e^{-\tau p^2} \widetilde{\phi}(p) \qquad s_{\text{rms}} = \sqrt{8\tau}$ ideal testing ground for sOPE N.B. [τ] = 2

Renormalised theory on the boundary requires no further renormalisation

Lüscher and Weisz, JHEP 1102 (2011) 51

Calculate Wilson coefficients in standard manner:

• for example, consider again the sOPE for the two-point function

$$\phi(x)\phi(0) = \frac{1}{x^2}\overline{c}_{\mathbb{I}}\mathbb{I} + \overline{c}_{\phi^2}\,\overline{\phi}^2(\tau,0) + \mathcal{O}(x)$$

Define Green functions via operators "embedded" in matrix elementrearrange sOPE

$$\overline{c}_{\mathbb{I}}(x,\tau) \langle \Omega | \mathbb{I} \tilde{\phi}_{R}(p_{1}) \tilde{\phi}_{R}(p_{2}) | \Omega \rangle = \langle \Omega | \phi(x) \phi(0) \tilde{\phi}_{R}(p_{1}) \tilde{\phi}_{R}(p_{2}) | \Omega \rangle - \overline{c}_{\phi^{2}}(x,\tau) \langle \Omega | \overline{\phi}(0,\tau) \phi(0) \tilde{\phi}_{R}(p_{1}) \tilde{\phi}_{R}(p_{2}) | \Omega \rangle$$

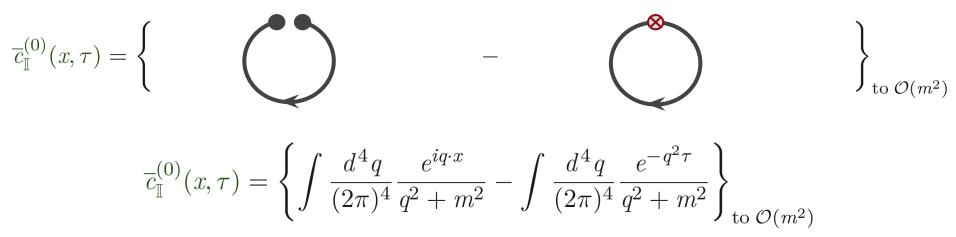
• work at tree-level and expand to order m^2

$$\overline{c}_{\mathbb{I}}^{(0)}(x,\tau) = \left\{ \left\langle \Omega | \phi(x)\phi(0)\tilde{\phi}_R(p_1)\tilde{\phi}_R(p_2) | \Omega \right\rangle - \left\langle \Omega | \overline{\phi}(0,\tau)\phi(0)\tilde{\phi}_R(p_1)\tilde{\phi}_R(p_2) | \Omega \right\rangle \right\}_{\text{to }\mathcal{O}(m^2)}$$

So we have

$$\overline{c}_{\mathbb{I}}^{(0)}(x,\tau) = \left\{ \left\langle \Omega | \phi(x)\phi(0)\tilde{\phi}_R(p_1)\tilde{\phi}_R(p_2) | \Omega \right\rangle^{(0)} - \left\langle \Omega | \overline{\phi}(0,\tau)\phi(0)\tilde{\phi}_R(p_1)\tilde{\phi}_R(p_2) | \Omega \right\rangle^{(0)} \right\}_{\text{to }\mathcal{O}(m^2)}$$

• graphically



• expanding in the mass and carrying out integrals

$$\overline{c}_{\mathbb{I}}^{(0)}(x,\tau) = \frac{1}{(2\pi)^2} \left[\frac{1}{x^2} - \frac{1}{4\tau} + \frac{m^2}{4} \left(1 - \gamma_E + \log\left(\frac{4\tau}{x^2}\right) \right) \right]$$

• compare to the Wilson coefficient in the original OPE

$$c_{\mathbb{I}}^{(0)}(x,\mu) = \frac{1}{(2\pi)^2} \left[\frac{1}{x^2} - \frac{m^2}{4} \left(\gamma_E + \log\left(\pi^2 \mu^2 x^2\right) \right) \right]$$

Beyond tree-level things get slightly trickier...

Working at one-loop, the rearranged sOPE $\overline{c}_{\mathbb{I}}(x,\tau) \langle \Omega | \mathbb{I} \tilde{\phi}_{R}(p_{1}) \tilde{\phi}_{R}(p_{2}) | \Omega \rangle = \langle \Omega | \phi(x) \phi(0) \tilde{\phi}_{R}(p_{1}) \tilde{\phi}_{R}(p_{2}) | \Omega \rangle$ $- \overline{c}_{\phi^{2}}(x,\tau) \langle \Omega | \overline{\phi}(0,\tau) \phi(0) \tilde{\phi}_{R}(p_{1}) \tilde{\phi}_{R}(p_{2}) | \Omega \rangle$

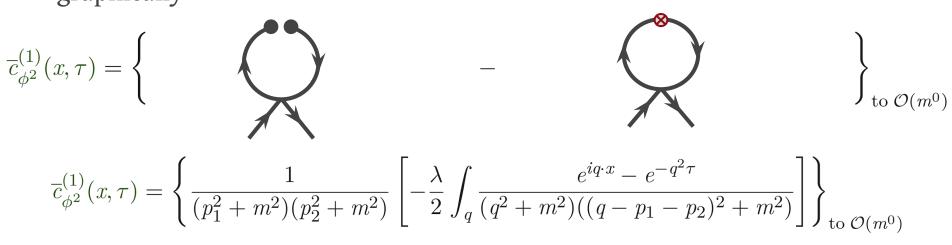
becomes

$$\overline{c}_{\mathbb{I}}^{(1)}(x,\tau) = \left\langle \Omega | \phi(x)\phi(0)\tilde{\phi}_{R}(p_{1})\tilde{\phi}_{R}(p_{2}) | \Omega \right\rangle^{(1)} - \left[\left\langle \Omega | \overline{\phi}(0,\tau)\phi(0)\tilde{\phi}_{R}(p_{1})\tilde{\phi}_{R}(p_{2}) | \Omega \right\rangle^{(1)} + \overline{c}_{\phi^{2}}^{(1)}(x,\tau) \left\langle \Omega | \overline{\phi}(0,\tau)\phi(0)\tilde{\phi}_{R}(p_{1})\tilde{\phi}_{R}(p_{2}) | \Omega \right\rangle^{(0)} \right]$$

so we must first determine $\overline{c}_{\phi^2}^{(1)}(x,\tau)$

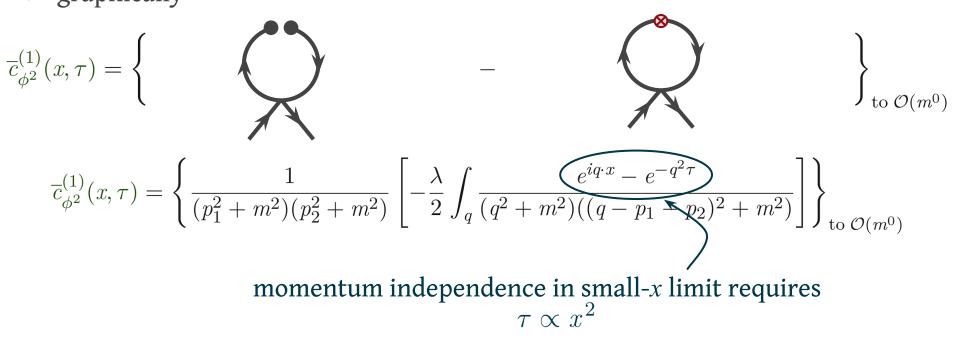
We have

$$\overline{c}_{\phi^{2}}^{(1)}(x,\tau) = \left\{ \left\langle \Omega | \phi(x)\phi(0)\tilde{\phi}_{R}(p_{1})\tilde{\phi}_{R}(p_{2}) | \Omega \right\rangle^{(1)} - \left\langle \Omega | \overline{\phi}(0,\tau)\phi(0)\tilde{\phi}_{R}(p_{1})\tilde{\phi}_{R}(p_{2}) | \Omega \right\rangle^{(1)} \right\}_{\text{to } \mathcal{O}(m^{0})}$$
• graphically



We have

$$\overline{c}_{\phi^{2}}^{(1)}(x,\tau) = \left\{ \left\langle \Omega | \phi(x)\phi(0)\tilde{\phi}_{R}(p_{1})\tilde{\phi}_{R}(p_{2}) | \Omega \right\rangle^{(1)} - \left\langle \Omega | \overline{\phi}(0,\tau)\phi(0)\tilde{\phi}_{R}(p_{1})\tilde{\phi}_{R}(p_{2}) | \Omega \right\rangle^{(1)} \right\}_{\text{to } \mathcal{O}(m^{0})}$$
• graphically



With

$$\overline{c}_{\phi^2}^{(1)}(x,\tau) = \frac{1}{2} \left(1 - \gamma_E + \log\left(\frac{4\tau}{x^2}\right) \right)$$

we need to determine remaining contribution

With

$$\overline{c}_{\phi^2}^{(1)}(x,\tau) = \frac{1}{2} \left(1 - \gamma_E + \log\left(\frac{4\tau}{x^2}\right) \right)$$

we need to determine remaining contribution

 $\overline{c}_{\mathbb{I}}^{(1)}(x,\tau) = \left\{ \left\langle \Omega | \phi(x)\phi(0)\tilde{\phi}_R(p_1)\tilde{\phi}_R(p_2) | \Omega \right\rangle^{(1)} - \left\langle \Omega | \overline{\phi}(0,\tau)\phi(0)\tilde{\phi}_R(p_1)\tilde{\phi}_R(p_2) | \Omega \right\rangle^{(1)} \right\}_{\text{to }\mathcal{O}(m^4)}$ graphically $\overline{c}_{\mathbb{I}}^{(1)}(x,\tau) = \left\{ \right.$ interaction vertex at flow time zero loop integral requires renormalisation introduce new scale μ

- Tree-level calculation demonstrates
 - recover leading-*x* behaviour
- One-loop calculation demonstrates
 - momentum independence of Wilson coefficients requires $\tau \propto x^2$
 - quantum effects generate renormalisation scale dependence μ

Renormalisation group equations enable us to study scale dependence

Consider renormalisation group (RG) equations for connected Green functions

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} = \mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial g} - \gamma_m m^2 \frac{\partial}{\partial m^2}$$

Green function of N external scalar fields

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} G_N^{(\mathrm{conn})} = -\frac{N}{2} \gamma \ G_N^{(\mathrm{conn})}$$

Green function of renormalised operator coupled to N external scalar fields

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} G_N^{(\mathrm{conn})}(\phi_R^2) = \left(\gamma_m - \frac{N}{2}\gamma\right) \ G_N^{(\mathrm{conn})}(\phi_R^2)$$

Applying the operator

$$\mathcal{O}_{\text{RG}} = \mu \frac{d}{d\mu} + \left(\frac{N}{2} + 1\right) \gamma$$
to the OPE

$$G_{N+2}^{(\text{conn})} = c_{\phi^2}(\mu x) G_N^{(\text{conn})}(\phi_R^2) + \mathcal{O}(x)$$
leads to the RG equation for the Wilson coefficient

$$\left[\mu \frac{d}{d\mu} + (\gamma + \gamma_m)\right] c_{\phi^2}(\mu x) = 0$$
anomalous dimension = difference between anomalous dimensions of non-local and local operators

For the sOPE we have

$$\mu \frac{d}{d\mu} \rightarrow \mu \frac{d}{d\mu} + \kappa \frac{d}{d\kappa}$$
We now act with
$$\mathcal{O}_{RG} = \mu \frac{d}{d\mu} + \left(\frac{N}{2} + 1\right) \gamma \rightarrow \mu \frac{d}{d\mu} + \kappa \frac{d}{d\kappa} + \left(\frac{N}{2} + 1\right)$$
on the sOPE

on the sOPE

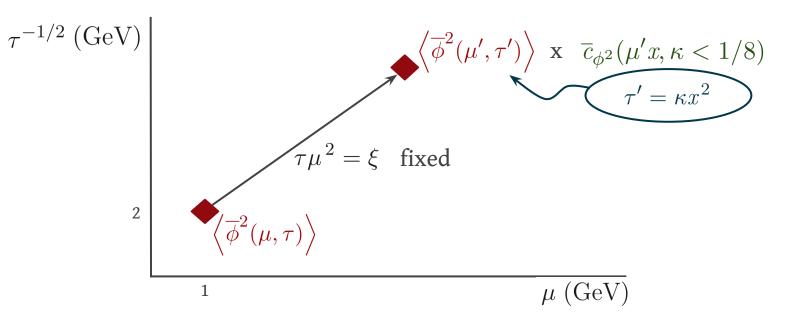
$$G_{N+2}^{(\text{conn})} = \overline{c}_{\phi^2}(\mu x) G_N^{(\text{conn})}(\overline{\phi}_R^2) + \mathcal{O}(x)$$

we obtain

anomalous dimension = difference between anomalous dimensions of nonlocal and (smeared) local operators

Wilson coefficients and matrix elements a function of two scales scale invariance ties scales together

Match to nonperturbative lattice calculations



sOPE summary

- Introduced locally smeared operator product expansion
- Scalar field theory demonstrates
 - momentum independence of coefficients connects smearing radius to space-time separation
 - quantum effects generate renormalisation scale dependence
- Renormalisation group considerations
 - tie together smearing and renormalisation scale

Systematic method to incorporate smeared operators in lattice calculations

Next up: application to DIS

Gradient flow a well-established tool for QCD

- non-linear flow time equations complicate analysis
- flow time evolution still classical

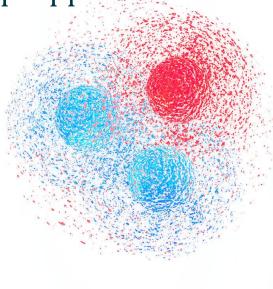
Lüscher and Weisz, JHEP 1102 (2011) 51

Demonstrate effectiveness

- determine Wilson coefficients at one loop
- calculate twist-2 matrix elements nonperturbatively

$$\overline{q} \gamma_{\mu} D_{\nu} D_{\rho} q \sim \frac{1}{a^2} \overline{q} \gamma_{\mu} q \longrightarrow \overline{q} \gamma_{\mu} D_{\nu} D_{\rho} q \sim \frac{1}{\tau} \overline{q} \gamma_{\mu} q$$

• apply nonperturbative step-scaling procedure



Thank you

cjmonahan@wm.edu

