

HEIDEL BERG 7.ukunf **SEIT 1386**

The in-medium heavy quark potential from quenched and dynamical lattice QCD

Alexander Rothkopf

Insitute for Theoretical Physics Heidelberg University

in collaboration with:

Y. Burnier and O.Kaczmarek

XXXII International Symposium on Lattice Field Theory 2014 Columbia University, NY, USA 2014-06-25 12:50h

Complex in-medium heavy QQ potential from effective field theory in real-time: NRQCD

$$\frac{\Lambda_{QCD}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \qquad \quad V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r,t)}{W(r,t)}$$

for a brief review see A.R. MPLA 28 (2013) 133000 and references therein

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Complex in-medium heavy QQ potential from effective field theory in **real-time**: NRQCD

$$\frac{\Lambda_{\text{QCD}}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \qquad \quad V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r, t)}{W(r, t)}$$

for a brief review see A.R. MPLA 28 (2013) 133000 and references therein

Connection to Euclidean lattice QCD via **spectral functions**:

$$W(\mathbf{r},\mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \rho(\mathbf{r},\omega) \quad \longleftrightarrow \quad W(\mathbf{r},\tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \rho(\mathbf{r},\omega)$$

Complex in-medium heavy QQ potential from effective field theory in **real-time**: NRQCD

 $\frac{\Lambda_{QCD}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \qquad \quad V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r,t)}{W(r,t)}$

for a brief review see A.R. MPLA 28 (2013) 133000 and references therein

Connection to Euclidean lattice QCD via **spectral functions**:

$$W(\mathbf{r},\mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \rho(\mathbf{r},\omega) \quad \longleftrightarrow \quad W(\mathbf{r},\tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \rho(\mathbf{r},\omega)$$
$$V^{Q\bar{Q}}(\mathbf{r}) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{i\omega t} \rho(\mathbf{r},\omega)}{\int_{-\infty}^{\infty} d\omega \, e^{i\omega t} \rho(\mathbf{r},\omega)} \quad \longleftrightarrow \quad \begin{array}{c} \text{Bayesian spectral}\\ \text{reconstruction} \end{array}$$

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

Complex in-medium heavy QQ potential from effective field theory in **real-time**: NRQCD

$$\frac{\Lambda_{QCD}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \qquad \quad V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r,t)}{W(r,t)}$$

for a brief review see A.R. MPLA 28 (2013) 133000 and references therein

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

Connection to Euclidean lattice QCD via spectral functions:

$$W(\mathbf{r},\mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \rho(\mathbf{r},\omega) \quad \longleftrightarrow \quad W(\mathbf{r},\tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \rho(\mathbf{r},\omega)$$
$$V^{Q\bar{Q}}(\mathbf{r}) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{i\omega t} \rho(\mathbf{r},\omega)}{\int_{-\infty}^{\infty} d\omega \, e^{i\omega t} \rho(\mathbf{r},\omega)} \quad \longleftrightarrow \quad \begin{array}{c} \text{Bayesian spectral}\\ \text{reconstruction} \end{array}$$

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

Potential from fit of lowest lying peak (skewed Lorentzian) position = Re[V] width = Im[V]

Y. Burnier, A.R. PRD86 (2012) 051503

Complex in-medium heavy QQ potential from effective field theory in **real-time**: NRQCD

 $\frac{\Lambda_{QCD}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \qquad \quad V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r,t)}{W(r,t)}$

for a brief review see A.R. MPLA 28 (2013) 133000 and references therein

Connection to Euclidean lattice QCD via spectral functions:

$$W(\mathbf{r},\mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \rho(\mathbf{r},\omega) \quad \longleftrightarrow \quad W(\mathbf{r},\tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \rho(\mathbf{r},\omega)$$
$$V^{Q\bar{Q}}(\mathbf{r}) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{i\omega t} \rho(\mathbf{r},\omega)}{\int_{-\infty}^{\infty} d\omega \, e^{i\omega t} \rho(\mathbf{r},\omega)} \quad \longleftrightarrow \quad \begin{array}{c} \text{Bayesian spectral}\\ \text{reconstruction} \end{array}$$

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

Potential from fit of lowest lying peak (skewed Lorentzian) position = Re[V] width = Im[V] Y. Burnier, A.R. PRD86 (2012) 051503

Bayesian reconstruction challenging: Need prior information to regularize ill-defined χ^2 fit

Complex in-medium heavy QQ potential from effective field theory in **real-time**: NRQCD

$$\frac{\Lambda_{QCD}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \qquad \quad V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r,t)}{W(r,t)}$$

for a brief review see A.R. MPLA 28 (2013) 133000 and references therein

Connection to Euclidean lattice QCD via **spectral functions**:

$$W(\mathbf{r},\mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \rho(\mathbf{r},\omega) \quad \longleftrightarrow \quad W(\mathbf{r},\tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \rho(\mathbf{r},\omega)$$
$$V^{Q\bar{Q}}(\mathbf{r}) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{i\omega t} \rho(\mathbf{r},\omega)}{\int_{-\infty}^{\infty} d\omega \, e^{i\omega t} \rho(\mathbf{r},\omega)} \quad \longleftrightarrow \quad \begin{array}{c} \text{Bayesian spectral}\\ \text{reconstruction} \end{array}$$

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

Potential from fit of lowest lying peak (skewed Lorentzian) position = Re[V] width = Im[V] Y. Burnier, A.R. PRD86 (2012) 051503

Bayesian reconstruction challenging: Need prior information to regularize ill-defined χ^2 fit

Recent improvement over Maximum Entropy Method: new prior, analytic treatment of α

$$S = \alpha \sum_{l=1}^{N_{\omega}} \Delta \omega_{l} \left(1 - \frac{\rho_{l}}{m_{l}} + \log \left[\frac{\rho_{l}}{m_{l}} \right] \right)$$

for more details see Y.Burnier, A.R. PRL 111 (2013) 18, 182003

Extraction strategy summary

From Euclidean lattice QCD correlators to the complex heavy quark potential

A.R. Mod. Phys. Lett. A, 28, 1330005 (2013)

Technical detail: Wilson Line correlators in Coulomb gauge instead of Wilson loops
Practical reason: Absence of cusp divergences, hence less suppression along τ

Two projects for V^{QQ} from the lattice

Quenched lattice QCD: anisotropic lattices with naïve Wilson action 32³xN_τ with Y. Burpier

• Fixed scale approach: $\beta=7.0$ $\xi=a_s/a_t=4$ $a_s=0.039$ fm

Ν _τ	24	32	40	48	56	64	72	80	96
T/T _c	3.11	2.33	1.86	1.55	1.33	1.17	1.04	0.93	0.78
N _{meas}	2750	1570	1680	1110	760	1110	700	940	690

Focus: Achieve a large number of time steps for accurate spectral width reconstruction

Two projects for V^{QQ} from the lattice

Quenched lattice QCD: anisotropic lattices with naïve Wilson action 32³xN_τ with Y. Burnier

• Fixed scale approach: $\beta = 7.0$ $\xi = a_s/a_t = 4$ $a_s = 0.039$ fm

Ν _τ	24	32	40	48	56	64	72	80	96
T/T _c	3.11	2.33	1.86	1.55	1.33	1.17	1.04	0.93	0.78
N _{meas}	2750	1570	1680	1110	760	1110	700	940	690

Focus: Achieve a large number of time steps for accurate spectral width reconstruction

Dynamical lattice QCD: isotropic lattices with asqtad action 48³x12 (HotQCD) with O. Kaczmarek

03	β	6.80	6.90	7.00	7.125	7.25	7.30	7.48
2) 0545	T/T _c	0.85	0.94	1.04	1.18	1.33	1.39	1.64
35 (201)	a [fm]	0.111	0.100	0.090	0.080	0.071	0.068	0.057
PRD 8	N _{meas}	1295	1340	1015	840	1620	1150	1130

Focus: Effect of light fermion on in-medium QQ interactions i.e. Re[V]

Towards V^{QQ}(r) on quenched lattices

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Towards V^{QQ}(r) on quenched lattices

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Towards V^{QQ}(r) on quenched lattices

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Identify the lowest lying peak and fit its shape over the Full-Width at Half Maximum

XXXII International Symposium on Lattice Field Theory

Re[V] in quenched lattice QCD

Re[V] in quenched lattice QCD

Transition from a confining to a Debye screened behavior

Re[V] in quenched lattice QCD

Transition from a confining to a Debye screened behavior

Comparison to color singlet free energies F¹(r): agreement within errorbars

$$F^{(1)}(\mathbf{r}) = -\frac{1}{\beta} \log \left[W_{||}(\mathbf{r}, \tau = \beta) \right]_{CG}$$

Transition from a confining to a Debye screened behavior

Comparison to color singlet free energies F¹(r): agreement within errorbars

$$\mathsf{F}^{(1)}(\mathsf{r}) = -\frac{1}{\beta} \log \big[W_{||}(\mathsf{r}, \tau = \beta) \big]_{\mathrm{CG}}$$

At T≈T_c extraction V^{QQ} benefits from using all datapoints instead of just $W_{||}(\tau=\beta)$

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

Since close to continuum (T_c=270MeV) attempt extraction of Debye mass

- Since close to continuum (T_c=270MeV) attempt extraction of Debye mass
- Phenomenological fit form for Coulomb and string screening S.Digal et.al. EPJ C43 (2005) 71-75

$${}^{\text{cDH}}(\mathbf{r},\mathsf{T}) = \frac{\sigma}{\mathfrak{m}_{\mathrm{D}}(\mathsf{T})} \Big[\frac{\Gamma(1/4)}{2^{3/2}\Gamma(3/4)} - \frac{\sqrt{\mathfrak{m}_{\mathrm{D}}(\mathsf{T})\mathfrak{r}}}{2^{3/4}\Gamma(3/4)} \mathsf{K}_{1/4}(\mathfrak{m}_{\mathrm{D}}^{2}(\mathsf{T})\mathfrak{r}^{2}) \Big] - \frac{\alpha}{\mathfrak{r}} \Big[e^{-\mathfrak{m}_{\mathrm{D}}(\mathsf{T})\mathfrak{r}} + \mathfrak{m}_{\mathrm{D}}(\mathsf{T})\mathfrak{r} \Big]$$

- Since close to continuum (T_c=270MeV) attempt extraction of Debye mass
- Phenomenological fit form for Coulomb and string screening S.Digal et.al. EPJ C43 (2005) 71-75

$$F^{\rm DH}(\mathbf{r},\mathsf{T}) = \frac{\sigma}{m_{\rm D}(\mathsf{T})} \Big[\frac{\Gamma(1/4)}{2^{3/2}\Gamma(3/4)} - \frac{\sqrt{m_{\rm D}(\mathsf{T})\mathbf{r}}}{2^{3/4}\Gamma(3/4)} K_{1/4}(m_{\rm D}^2(\mathsf{T})\mathbf{r}^2) \Big] - \frac{\alpha}{r} \Big[e^{-m_{\rm D}(\mathsf{T})\mathbf{r}} + m_{\rm D}(\mathsf{T})\mathbf{r} \Big]$$

Within the error bars, reasonable agreement with 1-loop HTL

Im[V^{QQ}] related to width: need large # of datapoints and high signal/noise

- Im[V^{QQ}] related to width: need large # of datapoints and high signal/noise
- **I** The smaller N_{τ} , the earlier the (artificially) strong rise above HTL sets in

Im[V^{QQ}] related to width: need large # of datapoints and high signal/noise

- **I** The smaller N_{τ} , the earlier the (artificially) strong rise above HTL sets in
- For small r: good agreement with HTL prediction down to 1.17T_c

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

Im[V^{QQ}] related to width: need large # of datapoints and high signal/noise

- **I** The smaller N_{τ} , the earlier the (artificially) strong rise above HTL sets in
- For small r: good agreement with HTL prediction down to 1.17T_c
- To improve the width reconstruction: better default model m(ω)≠const.

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

Towards V^{QQ}(r) on dynamical lattices

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Towards V^{QQ}(r) on dynamical lattices

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Towards V^{QQ}(r) on dynamical lattices

Identify the lowest lying peak and fit its shape over the Full-Width at Half Maximum

2

Λ

4

6

8

2

8

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Potential in the confining regime reliably extracted up to r=1fm (string breaking?)

Potential in the confining regime reliably extracted up to r=1fm (string breaking?)

Clear transition from confining to Debye screened behavior

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Potential in the confining regime reliably extracted up to r=1fm (string breaking?)
- Clear transition from confining to Debye screened behavior
- Also here agreement with color singlet free energies (at high T: $V^{QQ}(r) \leq F^{1}(r)$)

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Potential in the confining regime reliably extracted up to r=1fm (string breaking?)

- Clear transition from confining to Debye screened behavior
- Also here agreement with color singlet free energies (at high T: $V^{QQ}(r) \leq F^{1}(r)$)
- At T \approx T_c Re[V] benefits from using all datapoints instead of just W₁₁(τ=β)

A brief look at Im[V^{QQ}] in dynamical LQCD

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

A brief look at Im[V^{QQ}] in dynamical LQCD

 \blacksquare N_r=12 leads to underestimation of Im[V], where signal to noise is otherwise ok

A brief look at Im[V^{QQ}] in dynamical LQCD

 \blacksquare N_t=12 leads to underestimation of Im[V], where signal to noise is otherwise ok

At r>0.5fm decrease in signal to noise deteriorates width determination

A brief look at Im[V^{QQ}] in dynamical LQCD

 \square N_r=12 leads to underestimation of Im[V], where signal to noise is otherwise ok

- At r>0.5fm decrease in signal to noise deteriorates width determination
- Still: obtained values are of the same order of magnitude as the HTL prediction

- Established approach to the static in-medium heavy quark potential V^{QQ}(r):
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: A.R., T. Hatsuda, S.Sasaki PRL 108 (2012) 162001 A.R. Y. Burnier PRD86 (2012) 051503

 $Re[V^{QQ}]$ and $Im[V^{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra

Spectral functions reliably extracted with new Bayesian reconstruction method. A.R. Y. Burnier PRL 111 (2013) 18, 182003

- Established approach to the static in-medium heavy quark potential V^{QQ}(r):
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: A.R., T. Hatsuda, S.Sasaki PRL 108 (2012) 162001 A.R. Y. Burnier PRD86 (2012) 051503

 $Re[V^{QQ}]$ and $Im[V^{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra

- Spectral functions reliably extracted with new Bayesian reconstruction method. A.R. Y. Burnier PRL 111 (2013) 18, 182003
- Findings for the real part Re[V^{QQ}]:
 - $N_f=0 \& N_f=2+1$: Re[V^{QQ}] agrees with the color singlet free energies F¹ in CG within errors.
 - N_f=0: screening masses from Debye-Hückel fit and HTL in good agreement

- Established approach to the static in-medium heavy quark potential V^{QQ}(r):
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: A.R., T. Hatsuda, S.Sasaki PRL 108 (2012) 162001 A.R. Y. Burnier PRD86 (2012) 051503

 $Re[V^{QQ}]$ and $Im[V^{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra

- Spectral functions reliably extracted with new Bayesian reconstruction method. A.R. Y. Burnier PRL 111 (2013) 18, 182003
- Findings for the real part Re[V^{QQ}]:
 - $N_f=0 \& N_f=2+1$: Re[V^{QQ}] agrees with the color singlet free energies F¹ in CG within errors.
 - N_f=0: screening masses from Debye-Hückel fit and HTL in good agreement
- Findings for the imaginary part Im[V^{QQ}]:
 - $N_f=0$: for r<0.35fm close to HTL values down to shortly above T_c .

- Established approach to the static in-medium heavy quark potential V^{QQ}(r):
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: A.R., T. Hatsuda, S.Sasaki PRL 108 (2012) 162001 A.R. Y. Burnier PRD86 (2012) 051503

 $Re[V^{QQ}]$ and $Im[V^{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra

- Spectral functions reliably extracted with new Bayesian reconstruction method. A.R. Y. Burnier PRL 111 (2013) 18, 182003
- Findings for the real part Re[V^{QQ}]:
 - $N_f=0 \& N_f=2+1$: Re[V^{QQ}] agrees with the color singlet free energies F¹ in CG within errors.
 - N_f=0: screening masses from Debye-Hückel fit and HTL in good agreement
- Findings for the imaginary part Im[V^{QQ}]:
 - $N_f=0$: for r<0.35fm close to HTL values down to shortly above T_c .
- Current status of first principles lattice QCD input for QQ real-time evolution VQQ(r) in the QGP is complex: Re[VQQ] close to F¹, Im[VQQ] close to HTL @ T>T_c

- Established approach to the static in-medium heavy quark potential V^{QQ}(r):
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: A.R., T. Hatsuda, S.Sasaki PRL 108 (2012) 162001 A.R. Y. Burnier PRD86 (2012) 051503

 $Re[V^{QQ}]$ and $Im[V^{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra

- Spectral functions reliably extracted with new Bayesian reconstruction method. A.R. Y. Burnier PRL 111 (2013) 18, 182003
- Findings for the real part Re[VQQ]:
 - $N_f=0 \& N_f=2+1$: Re[V^{QQ}] agrees with the color singlet free energies F¹ in CG within errors.
 - N_f=0: screening masses from Debye-Hückel fit and HTL in good agreement
- Findings for the imaginary part Im[V^{QQ}]:
 - $N_f=0$: for r<0.35fm close to HTL values down to shortly above T_c .
- Current status of **first principles** lattice QCD **input** for $Q\bar{Q}$ **real-time evolution** $V^{QQ}(r)$ in the QGP is complex: Re[V^{QQ}] close to F¹, Im[V^{QQ}] close to HTL @ T>T_c

Thank you for your attention

XXXII International Symposium on Lattice Field Theory