The in-medium heavy quark potential from quenched and dynamical lattice QCD

Alexander Rothkopf
Institute for Theoretical Physics
Heidelberg University

in collaboration with:
Y. Burnier and O. Kaczmarek

XXXII International Symposium on Lattice Field Theory 2014
Columbia University, NY, USA 2014-06-25 12:50h
The $T>0$ $Q\bar{Q}$ potential from lattice QCD

- Complex in-medium heavy $Q\bar{Q}$ potential from effective field theory in \textbf{real-time}: NRQCD

\[\frac{\Lambda_{QCD}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1, \quad V_{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r, t)}{W(r, t)} \]

for a brief review see A.R. MPLA 28 (2013) 133000 and references therein
The $T>0$ $Q\bar{Q}$ potential from lattice QCD

- Complex in-medium heavy $Q\bar{Q}$ potential from effective field theory in real-time: NRQCD

\[\frac{\Lambda_{\text{QCD}}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \]
\[V_{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r, t)}{W(r, t)} \]

- Connection to Euclidean lattice QCD via spectral functions:

\[W(r, t) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \rho(r, \omega) \quad \leftrightarrow \quad W(r, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \rho(r, \omega) \]
The $T>0$ Q\bar{Q} potential from lattice QCD

- Complex in-medium heavy Q\bar{Q} potential from effective field theory in \textbf{real-time}: NRQCD

\[
\frac{\Lambda_{\text{QCD}}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1
\]

\[V_{\text{Q}\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r, t)}{W(r, t)}\]

- Connection to Euclidean lattice QCD via \textbf{spectral functions}:

\[W(r, t) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \rho(r, \omega) \quad \leftrightarrow \quad W(r, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \rho(r, \omega)\]

\[V_{\text{Q}\bar{Q}}(r) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{i\omega t} \rho(r, \omega)}{\int_{-\infty}^{\infty} d\omega \, e^{i\omega t} \rho(r, \omega)}\]

Bayesian spectral reconstruction

for a brief review see
A.R. MPLA 28 (2013) 133000
and references therein
The T>0 Q̅Q potential from lattice QCD

- Complex in-medium heavy Q̅Q potential from effective field theory in real-time: NRQCD
 \[
 \frac{\Lambda_{QCD}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \quad V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r, t)}{W(r, t)}
 \]

- Connection to Euclidean lattice QCD via spectral functions:
 \[
 W(r, t) = \int_{-\infty}^{\infty} d\omega \ e^{-i\omega t} \rho(r, \omega) \quad \leftrightarrow \quad W(r, \tau) = \int_{-\infty}^{\infty} d\omega \ e^{-\omega \tau} \rho(r, \omega)
 \]
 \[
 V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \ \omega \ e^{i\omega t} \rho(r, \omega)}{\int_{-\infty}^{\infty} d\omega \ e^{i\omega t} \rho(r, \omega)}
 \]

- Potential from fit of lowest lying peak (skewed Lorentzian) position = Re[V] width = Im[V]

 Y. Burnier, A.R. PRD86 (2012) 051503
The $T>0$ $Q\bar{Q}$ potential from lattice QCD

- Complex in-medium heavy $Q\bar{Q}$ potential from effective field theory in **real-time**: NRQCD
 \[
 \frac{\Lambda_{\text{QCD}}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1 \quad \text{and} \quad V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i \partial_t W(r, t)}{W(r, t)}
 \]

- Connection to Euclidean lattice QCD via **spectral functions**:
 \[
 W(r, t) = \int_{-\infty}^{\infty} d\omega \ e^{-i\omega t} \rho(r, \omega) \quad \leftrightarrow \quad W(r, \tau) = \int_{-\infty}^{\infty} d\omega \ e^{-\omega \tau} \rho(r, \omega)
 \]
 \[
 V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \ \omega e^{i\omega t} \rho(r, \omega)}{\int_{-\infty}^{\infty} d\omega \ e^{i\omega t} \rho(r, \omega)}
 \]
 - Bayesian spectral reconstruction

- Potential from fit of **lowest lying peak** (skewed Lorentzian) position $= \text{Re}[V]$ width $= \text{Im}[V]$ (Y. Burnier, A.R. PRD86 (2012) 051503)

- Bayesian reconstruction challenging: Need prior information to regularize ill-defined χ^2 fit
The $T>0$ $Q\bar{Q}$ potential from lattice QCD

- Complex in-medium heavy $Q\bar{Q}$ potential from effective field theory in real-time: NRQCD
 \[
 \frac{\Lambda_{\text{QCD}}}{m_Q} \ll 1, \quad \frac{T}{m_Q} \ll 1
 \]
 \[
 V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{i\partial_t W(r, t)}{W(r, t)}
 \]

- Connection to Euclidean lattice QCD via spectral functions:
 \[
 W(r, t) = \int_{-\infty}^{\infty} d\omega \ e^{-i\omega t} \rho(r, \omega)
 \]
 \[
 V^{Q\bar{Q}}(r) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \ \omega \ e^{i\omega t} \rho(r, \omega)}{\int_{-\infty}^{\infty} d\omega \ e^{i\omega t} \rho(r, \omega)}
 \]

- Potential from fit of lowest lying peak (skewed Lorentzian) position = $\text{Re}[V]$ width = $\text{Im}[V]$
 Y. Burnier, A.R. PRD86 (2012) 051503

- Bayesian reconstruction challenging: Need prior information to regularize ill-defined χ^2 fit

- Recent improvement over Maximum Entropy Method: new prior, analytic treatment of α
 \[
 S = \alpha \sum_{l=1}^{N_\omega} \Delta \omega_l \left(1 - \frac{\rho_l}{m_l} + \log \left[\frac{\rho_l}{m_l} \right] \right)
 \]
 for more details see
 Y.Burnier, A.R. PRL 111 (2013) 18, 182003
Extraction strategy summary

- From Euclidean lattice QCD correlators to the complex heavy quark potential

Technical detail: Wilson Line correlators in Coulomb gauge instead of Wilson loops
Practical reason: Absence of cusp divergences, hence less suppression along τ
Two projects for V^{QQ} from the lattice

- Quenched lattice QCD: anisotropic lattices with naïve Wilson action $32^3 \times N_\tau$
 - Fixed scale approach: $\beta=7.0$, $\xi=a_s/a_\tau=4$, $a_s=0.039\text{fm}$

<table>
<thead>
<tr>
<th>N_τ</th>
<th>24</th>
<th>32</th>
<th>40</th>
<th>48</th>
<th>56</th>
<th>64</th>
<th>72</th>
<th>80</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/T_C</td>
<td>3.11</td>
<td>2.33</td>
<td>1.86</td>
<td>1.55</td>
<td>1.33</td>
<td>1.17</td>
<td>1.04</td>
<td>0.93</td>
<td>0.78</td>
</tr>
<tr>
<td>N_{meas}</td>
<td>2750</td>
<td>1570</td>
<td>1680</td>
<td>1110</td>
<td>760</td>
<td>1110</td>
<td>700</td>
<td>940</td>
<td>690</td>
</tr>
</tbody>
</table>

- **Focus**: Achieve a large number of time steps for accurate spectral width reconstruction
Two projects for V^{QQ} from the lattice

- **Quenched lattice QCD**: anisotropic lattices with naïve Wilson action $32^3 \times N_\tau$
 - Fixed scale approach: $\beta=7.0$, $\xi=a_s/a_\tau=4$, $a_s=0.039\text{fm}$

<table>
<thead>
<tr>
<th>N_τ</th>
<th>24</th>
<th>32</th>
<th>40</th>
<th>48</th>
<th>56</th>
<th>64</th>
<th>72</th>
<th>80</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/T_C</td>
<td>3.11</td>
<td>2.33</td>
<td>1.86</td>
<td>1.55</td>
<td>1.33</td>
<td>1.17</td>
<td>1.04</td>
<td>0.93</td>
<td>0.78</td>
</tr>
<tr>
<td>N_{meas}</td>
<td>2750</td>
<td>1570</td>
<td>1680</td>
<td>1110</td>
<td>760</td>
<td>1110</td>
<td>700</td>
<td>940</td>
<td>690</td>
</tr>
</tbody>
</table>

 Focus: Achieve a large number of time steps for accurate spectral width reconstruction

- **Dynamical lattice QCD**: isotropic lattices with asqtad action $48^3 \times 12$ (HotQCD)

<table>
<thead>
<tr>
<th>β</th>
<th>6.80</th>
<th>6.90</th>
<th>7.00</th>
<th>7.125</th>
<th>7.25</th>
<th>7.30</th>
<th>7.48</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/T_C</td>
<td>0.85</td>
<td>0.94</td>
<td>1.04</td>
<td>1.18</td>
<td>1.33</td>
<td>1.39</td>
<td>1.64</td>
</tr>
<tr>
<td>$a \text{ [fm]}$</td>
<td>0.111</td>
<td>0.100</td>
<td>0.090</td>
<td>0.080</td>
<td>0.071</td>
<td>0.068</td>
<td>0.057</td>
</tr>
<tr>
<td>N_{meas}</td>
<td>1295</td>
<td>1340</td>
<td>1015</td>
<td>840</td>
<td>1620</td>
<td>1150</td>
<td>1130</td>
</tr>
</tbody>
</table>

 Focus: Effect of light fermion on in-medium QQ interactions i.e. Re$[V]$
Towards $V^{QQ}(r)$ on quenched lattices

N$_c$=80
T=252 MeV

N$_c$=24
T=839 MeV
Towards $V^{QQ}(r)$ on quenched lattices

Bayesian reconstruction:
$N_\omega = 3000$, $I_\omega^{\num} = [-12, 25]$
$\tau_{\num}^{\max} = 20$, $m(\omega) =$ const.
512 bits precision, $\Delta_{\min}^{\text{prel}} = 10^{-60}$
Towards $V^{QQ}(r)$ on quenched lattices

- Identify the lowest lying peak and fit its shape over the Full-Width at Half Maximum
Re[V] in quenched lattice QCD

Preliminary

N_f=0

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re[V] [GeV]

r [fm]

209.7 MeV 251.6 MeV 279.6 MeV 314.6 MeV 419.4 MeV 359.5 MeV 629.1 MeV 503.3 MeV 838.8 MeV
Re[V] in quenched lattice QCD

PRELIMINARY

Transition from a confining to a Debye screened behavior
Re[V] in quenched lattice QCD

- Transition from a confining to a Debye screened behavior
- Comparison to color singlet free energies $F^{(1)}(r)$: agreement within errorbars

$$F^{(1)}(r) = -\frac{1}{\beta} \log [W_{\parallel}(r, \tau = \beta)]_{CG}$$
- Transition from a confining to a Debye screened behavior
- Comparison to color singlet free energies $F_1(r)$: agreement within errorbars

 $$F_1(r) = -\frac{1}{\beta} \log [W_{||}(r, \tau = \beta)]_{CG}$$

- At $T \approx T_c$ extraction V^{QQ} benefits from using all datapoints instead of just $W_{||}(\tau = \beta)$
Debye-Hückel Fit of the Debye mass

\[r \text{[fm]} \]

\[\text{Re}[V] \text{[GeV]} \]

\[N_c=3, N_f=0, \beta=7, \xi=3.5 \]
\[a=0.039 \text{fm} \]

\[m_D=0.77\pm0.13 \text{ GeV} \]
\[m_D=0.73\pm0.10 \text{ GeV} \]
\[m_D=0.61\pm0.09 \text{ GeV} \]
\[m_D=0.50\pm0.09 \text{ GeV} \]
\[m_D=0.46\pm0.03 \text{ GeV} \]
\[m_D=0.34\pm0.05 \text{ GeV} \]
\[m_D=0.33\pm0.03 \text{ GeV} \]

\[\alpha=0.25\pm0.01 \]
\[\sigma=0.13\pm0.01 \text{ GeV}^2 \]
Debye-Hückel Fit of the Debye mass

- Since close to continuum ($T_C=270\text{MeV}$) attempt extraction of Debye mass
Debye-Hückel Fit of the Debye mass

Since close to continuum ($T_C=270\text{MeV}$) attempt extraction of Debye mass

Phenomenological fit form for Coulomb and string screening

\[
F^{DH}(r, T) = \frac{\sigma}{m_D(T)} \left[\frac{\Gamma(1/4)}{2^{3/2} \Gamma(3/4)} - \frac{\sqrt{m_D(T)} r}{2^{3/4} \Gamma(3/4)} K_{1/4}(m_D^2(T)r^2) \right] - \frac{\alpha}{r} \left[e^{-m_D(T)r} + m_D(T)r \right]
\]

\[N_c=3, N_f=0, \beta=7, \xi=3.5\]
\[a=0.039\text{fm}\]
\[m_D=0.77\pm0.13 \text{ GeV}\]
\[m_D=0.73\pm0.10 \text{ GeV}\]
\[m_D=0.61\pm0.09 \text{ GeV}\]
\[m_D=0.50\pm0.09 \text{ GeV}\]
\[m_D=0.46\pm0.03 \text{ GeV}\]
\[m_D=0.33\pm0.09 \text{ GeV}\]
\[m_D=0.34\pm0.05 \text{ GeV}\]
\[m_D=0.33\pm0.03 \text{ GeV}\]
\[\alpha=0.25\pm0.01\]
\[\sigma=0.13\pm0.01 \text{ GeV}^2\]
Debye-Hückel Fit of the Debye mass

- Since close to continuum ($T_C=270\text{MeV}$) attempt extraction of Debye mass
- Phenomenological fit form for Coulomb and string screening
 \[
 F^{DH}(r, T) = \frac{\sigma}{m_D(T)} \left[\frac{\Gamma(1/4)}{2^{3/2} \Gamma(3/4)} - \frac{\sqrt{m_D(T) r}}{2^{3/4} \Gamma(3/4)} K_{1/4}(m_D^2(T) r^2) \right] - \frac{\alpha}{r} \left[e^{-m_D(T) r} + m_D(T) r \right]
 \]
- Within the error bars, reasonable agreement with 1-loop HTL

S. Digal et al. EPJ C43 (2005) 71-75
Imaginary part at finite temperature

- \text{Im}[V^{QQ}] \text{ related to width: need large # of datapoints and high signal/noise}
Imaginary part at finite temperature

- $\text{Im}[V^{QQ}]$ related to width: need large # of datapoints and high signal/noise
- The smaller N_f, the earlier the (artificially) strong rise above HTL sets in
Imaginary part at finite temperature

- \(\text{Im}[V^{QQ}] \) related to width: need large # of datapoints and high signal/noise
- The smaller \(N_f \), the earlier the (artificially) strong rise above HTL sets in
- For small \(r \): good agreement with HTL prediction down to \(1.17T_C \)
Im[\text{V}^{QQ}] related to width: need large # of datapoints and high signal/noise

The smaller \(N_f \), the earlier the (artificially) strong rise above HTL sets in

For small \(r \): good agreement with HTL prediction down to \(1.17T_c \)

To improve the width reconstruction: better default model \(m(\omega) \neq \text{const.} \)
Towards $V_{QQ}^Q(r)$ on dynamical lattices

\[W/(dr, \tau) \text{ [Lat]} \]

$\beta = 6.800$
$T = 147.8 \text{ MeV}$

$\beta = 7.480$
$T = 286.1 \text{ MeV}$
Towards $V^{QQ}(r)$ on dynamical lattices

Bayesian reconstruction:
$N_\omega = 4000$, $I_\omega^{\text{num}} = [-12, 25]$,
$\tau_{\text{max}}^{\text{num}} = 20$, $m(\omega) = \text{const.}$
512 bits precision, $\Delta^{\text{min}} = 10^{-60}$
Towards $V^{QQ}(r)$ on dynamical lattices

- Identify the lowest lying peak and fit its shape over the Full-Width at Half Maximum
The real part in dynamical lattice QCD
The real part in dynamical lattice QCD

Potential in the confining regime reliably extracted up to $r=1\text{fm}$ (string breaking?)
The real part in dynamical lattice QCD

- Potential in the confining regime reliably extracted up to $r=1\text{fm}$ (string breaking?)
- Clear transition from confining to Debye screened behavior
Potential in the confining regime reliably extracted up to $r=1\text{fm}$ (string breaking?)

- Clear transition from confining to Debye screened behavior
- Also here agreement with color singlet free energies (at high T: $V^{QQ}(r) \lesssim F^1(r)$)
Potential in the confining regime reliably extracted up to $r=1\text{fm}$ (string breaking?)

- Clear transition from confining to Debye screened behavior
- Also here agreement with color singlet free energies (at high T: $V^{QQ}(r) \lesssim F^1(r)$)
- At $T \approx T_C$ Re[V] benefits from using all datapoints instead of just $W_\parallel(\tau=\beta)$
A brief look at $\text{Im}[V^{QQ}]$ in dynamical LQCD
A brief look at $\text{Im}[V^{QQ}]$ in dynamical LQCD

- $N_\tau = 12$ leads to underestimation of $\text{Im}[V]$, where signal to noise is otherwise ok
N$_t$=12 leads to underestimation of Im[V], where signal to noise is otherwise ok

At r>0.5fm decrease in signal to noise deteriorates width determination
A brief look at $\text{Im}[V^{QQ}]$ in dynamical LQCD

- $N_\tau=12$ leads to underestimation of $\text{Im}[V]$, where signal to noise is otherwise ok.
- At $r>0.5\text{fm}$ decrease in signal to noise deteriorates width determination.
- Still: obtained values are of the same order of magnitude as the HTL prediction.
Conclusion

- Established approach to the static in-medium heavy quark potential $V^{QQ}(r)$:
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: $\text{Re}[V^{QQ}]$ and $\text{Im}[V^{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra
 - Spectral functions reliably extracted with new Bayesian reconstruction method.

References:
A.R. Y. Burnier PRD86 (2012) 051503
A.R. Y. Burnier PRL 111 (2013) 18, 182003
Conclusion

- Established approach to the static in-medium heavy quark potential $V_{QQ}(r)$:
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: $\text{Re}[V_{QQ}]$ and $\text{Im}[V_{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra
 - Spectral functions reliably extracted with new Bayesian reconstruction method.

- Findings for the real part $\text{Re}[V_{QQ}]$:
 - $N_f=0$ & $N_f=2+1$: $\text{Re}[V_{QQ}]$ agrees with the color singlet free energies F_1 in CG within errors.
 - $N_f=0$: screening masses from Debye-Hückel fit and HTL in good agreement
Conclusion

- Established approach to the static in-medium heavy quark potential $V_{QQ}(r)$:
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: $\text{Re}[V_{QQ}]$ and $\text{Im}[V_{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra
 - Spectral functions reliably extracted with new Bayesian reconstruction method.

- Findings for the real part $\text{Re}[V_{QQ}]$:
 - $N_f=0$ & $N_f=2+1$: $\text{Re}[V_{QQ}]$ agrees with the color singlet free energies F^1 in CG within errors.
 - $N_f=0$: screening masses from Debye-Hückel fit and HTL in good agreement

- Findings for the imaginary part $\text{Im}[V_{QQ}]$:
 - $N_f=0$: for $r<0.35\text{fm}$ close to HTL values down to shortly above T_C.

Conclusion

- **Established approach to the static in-medium heavy quark potential** $V^{QQ}(r)$:
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: Re[V^{QQ}] and Im[V^{QQ}] from the position and width of a skewed Lorentzian in Wilson loop/line spectra
 - Spectral functions reliably extracted with new Bayesian reconstruction method.

- **Findings for the real part** Re[V^{QQ}]:
 - $N_f=0$ & $N_f=2+1$: Re[V^{QQ}] agrees with the color singlet free energies F^1 in CG within errors.
 - $N_f=0$: screening masses from Debye-Hückel fit and HTL in good agreement

- **Findings for the imaginary part** Im[V^{QQ}]:
 - $N_f=0$: for $r<0.35$fm close to HTL values down to shortly above T_C.

- **Current status of first principles lattice QCD input** for $Q\bar{Q}$ real-time evolution $V^{QQ}(r)$ in the QGP is complex: Re[V^{QQ}] close to F^1, Im[V^{QQ}] close to HTL @ $T>T_C$
Conclusion

- **Established approach to the static in-medium heavy quark potential $V^{QQ}(r)$:**
 - Definition from QCD via effective field theory NRQCD: Wilson loops/lines at late real-time
 - Connection to lattice QCD: $Re[V^{QQ}]$ and $Im[V^{QQ}]$ from the position and width of a skewed Lorentzian in Wilson loop/line spectra
 - Spectral functions reliably extracted with new Bayesian reconstruction method.

- **Findings for the real part $Re[V^{QQ}]$:**
 - $N_f=0$ & $N_f=2+1$: $Re[V^{QQ}]$ agrees with the color singlet free energies F^1 in CG within errors.
 - $N_f=0$: screening masses from Debye-Hückel fit and HTL in good agreement

- **Findings for the imaginary part $Im[V^{QQ}]$:**
 - $N_f=0$: for $r<0.35\,\text{fm}$ close to HTL values down to shortly above T_C.

- **Current status of first principles lattice QCD input for $Q\bar{Q}$ real-time evolution**
 - $V^{QQ}(r)$ in the QGP is complex: $Re[V^{QQ}]$ close to F^1, $Im[V^{QQ}]$ close to HTL @ $T>T_C$

Thank you for your attention