## Non-perturbative improvement of the axial current in $\mathrm{N}_{\mathrm{f}}=3$ lattice QCD

Jochen Heitger


John Bulava Michele Della Morte Christian Wittemeier

$$
\overline{\mathcal{A}}_{\text {Collaboration }}^{L P H A} \frac{\text { C LS }}{\text { based }}
$$

## LATTICE 2014

The XXXII International Symposium on Lattice Field Theory
Columbia University, New York, USA, June 23 - 28, 2014
June 24, 2014

## Motivation

Inherent O (a) discretization errors of Wilson fermions are systematically removable via Symanzik improvement, by adding ...

- ... a dimension-5 term to the action (Sheikoleslami-Wohlert term $\propto c_{s w}$ )
- ... dimension-4 terms to quark bilinear composite operators

Improvement \& Renormalization pattern of the axial vector current

$$
\begin{gathered}
{\left[\left(A_{I}\right)_{\mu}^{a}\right]_{R}(x)=Z_{A}\left[A_{\mu}^{a}(x)+\operatorname{ac}_{A} \frac{1}{2}\left(\partial_{\mu}+\partial_{\mu}^{*}\right) P^{a}(x)\right]} \\
A_{\mu}^{a}(x)=\bar{\psi}(x) T^{a} \gamma_{\mu} \gamma_{5} \psi(x) \quad P^{a}(x)=\bar{\psi}(x) T^{a} \gamma_{5} \psi(x)
\end{gathered}
$$

Prominent applications of the improved (\& renormalized) axial current:

- PCAC quark masses, e.g., for tuning $N_{f}=2+1(+1)$ simulations
- Pseudoscalar decay constants $f_{P S}$, e.g., for scale setting with $f_{K}$
$\Rightarrow$ Non-perturbative determination of improvement coefficient $c_{A}$ desired
[for $Z_{A}$, see next talk by Christian Wittemeier]


## Strategy

Preferable criteria for a sensible improvement condition:
1.) Large sensitivity for $L \gtrsim 0.8 \mathrm{fm}$ and low-energy states with $E \ll a^{-1}$ $\rightarrow$ variation of boundary wave functions in PCAC with external states
2.) Imposing improvement conditions at all physical scales kept fixed $\rightarrow$ define $c_{A}$ on a line of constant physics (LCP)
$\Rightarrow \mathrm{O}(\mathrm{a})$ ambiguities disappear smoothly towards the continuum limit
$\Rightarrow$ avoid potentially large $\mathrm{O}(\mathrm{a})$ ambiguities in $\mathrm{c}_{\mathrm{A}}$ itself
By this approach, $\mathrm{c}_{\mathrm{A}}$ is known in QCD with dynamical Wilson quarks for ...

- ... $\mathrm{N}_{\mathrm{f}}=2$ with plaquette gauge action
[ ${ }^{\text {A }}$ LPHA Columsinan , JHEP0503(2005)029, hep-lat/0503003]
- ... $N_{f}=3$ with Iwasaki gauge action

Here:

- $\mathrm{N}_{\mathrm{f}}=3$ with tree-level Symanzik improved (aka "Lüscher-Weisz") gauge action

[^0]
## Strategy

1.) PCAC relation with different external states

## Basic idea:

The PCAC quark mass, derived from an operator identity, is independent of external states and the insertion point up to cutoff effects

$$
\begin{aligned}
m(x ; \alpha, \beta) & =r(x ; \alpha, \beta)+a c_{A} \cdot s(x ; \alpha, \beta)+O\left(a^{2}\right) \\
r(x ; \alpha, \beta) & =\frac{\langle\alpha| \frac{1}{2}\left(\partial_{\mu}+\partial_{\mu}^{*}\right) A_{\mu}^{a}(x)|\beta\rangle}{2\langle\alpha| P^{a}(x)|\beta\rangle} \\
s(x ; \alpha, \beta) & =\frac{\langle\alpha| \partial_{\mu} \partial_{\mu}^{*} P^{a}(x)|\beta\rangle}{2\langle\alpha| P^{a}(x)|\beta\rangle}
\end{aligned}
$$

- Continuum: mpCAC independent of external states $|\alpha\rangle,|\beta\rangle$, and $x$
- Lattice: O(a) ambiguities without improvement
$\Rightarrow$ Improvement condition:
From two sets of external states and insertion points:

$$
m(x ; \alpha, \beta) \stackrel{!}{=} m(y ; \gamma, \delta) \Longleftrightarrow-c_{A} \equiv \frac{\Delta r}{a \Delta s}=\frac{1}{a} \cdot \frac{r(x ; \alpha, \beta)-r(y ; \gamma, \delta)}{s(x ; \alpha, \beta)-s(y ; \gamma, \delta)}
$$

## Strategy

1.) PCAC relation with different external states

Implementation in finite-volume QCD with Schrödinger functional BCs (periodic BCs in space, Dirichlet in time; finite-volume renormalization scheme)

- Use correlators with spatial trial wave functions $\omega$ at the boundaries:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{A}}\left(\mathrm{x}_{0} ; \omega\right) & =-\frac{\mathrm{a}^{3}}{3 \mathrm{~L}^{6}} \sum_{\mathrm{x}}\left\langle A_{0}^{\mathrm{a}}(x) \mathcal{O}^{\mathrm{a}}(\omega)\right\rangle \\
\mathrm{f}_{\mathrm{P}}\left(\mathrm{x}_{0} ; \omega\right) & =-\frac{\mathrm{a}^{3}}{3 \mathrm{~L}^{6}} \sum_{\mathrm{x}}\left\langle\mathrm{P}^{\mathrm{a}}(x) \mathcal{O}^{\mathrm{a}}(\omega)\right\rangle \\
\mathrm{F}_{1}\left(\omega^{\prime}, \omega\right) & =-\frac{1}{3 \mathrm{~L}^{6}}\left\langle\mathcal{O}^{\prime a}\left(\omega^{\prime}\right) \mathcal{O}^{\mathrm{a}}(\omega)\right\rangle \\
\mathcal{O}^{\mathrm{a}}(\omega) & =\mathrm{a}^{6} \sum_{\mathrm{x}, \mathrm{y}} \bar{\zeta}(\mathbf{x}) \mathrm{T}^{\mathrm{a}} \gamma_{5} \omega(\mathrm{x}-\mathbf{y}) \zeta(\mathbf{y})
\end{aligned}
$$

- Then (where also a value for $x_{0}$ must be specified):


$$
r\left(x_{0} ; \omega\right)=\frac{\frac{1}{2}\left(\partial_{0}+\partial_{0}^{*}\right) f_{A}\left(x_{0} ; \omega\right)}{2 f_{\mathrm{P}}\left(x_{0} ; \omega\right)}
$$

$$
s\left(x_{0} ; \omega\right)=\frac{\partial_{0} \partial_{0}^{*} \mathrm{f}_{\mathrm{P}}\left(\mathrm{x}_{0} ; \omega\right)}{2 \mathrm{f}_{\mathrm{P}}\left(\mathrm{x}_{0} ; \omega\right)}
$$

## Strategy

1.) PCAC relation with different external states

Choose wave functions $\omega_{\pi^{(0)}}$ and $\omega_{\pi^{(1)}}$ s. th. operator $\mathcal{O}^{a}(\omega)$ couples only to the ground and first excited state in the pseudoscalar channel Approximation of $\omega_{\pi^{(0)}}$ and $\omega_{\pi^{(1)}}$

- Employ a basis of three (spatially periodic) wave functions

$$
\begin{aligned}
& \omega_{i}(\mathbf{x})=N_{i} \sum_{\mathbf{n} \in \mathbb{Z}^{3}} \bar{\omega}_{i}(|\mathbf{x}-\mathbf{n L}|) \quad \mathfrak{i}=1, \ldots, 3 \\
& \bar{\omega}_{1}(r)=e^{-r / a_{0}} \quad \bar{\omega}_{2}(r)=r e^{-r / a_{0}} \quad \bar{\omega}_{3}(r)=e^{-r /\left(2 a_{0}\right)}
\end{aligned}
$$

with normalization $N_{i}$ and $a_{0}$ some physical length scale (set to $L / 6$ )

- $\left.F_{1}\left(\omega_{i}^{\prime}, \omega_{j}\right)\right|_{i, j=1,2,3}$ becomes a positive \& symmetric $3 \times 3$ matrix, whose eigenvalues $\lambda^{(0)}>\lambda^{(1)}>\lambda^{(2)}$ and (normalized) eigenvectors $\eta^{(0)}, \eta^{(1)}, \eta^{(2)}$ can be calculated by diagonalization
- Now approximate $\omega_{\pi^{(0)}}$ and $\omega_{\pi^{(1)}}$ by the 1st and 2nd eigenvectors:

$$
\omega_{\pi^{(0)}} \approx \sum_{i=1}^{3} \eta_{i}^{(0)} \omega_{i} \quad \omega_{\pi^{(1)}} \approx \sum_{i=1}^{3} \eta_{i}^{(1)} \omega_{i}
$$

## Strategy

2.) Line of constant physics

Simulations for $\mathrm{c}_{\mathrm{A}}$ performed along a line of constant physics (LCP)
Constant physics condition:
Starting from an initial pair $(L / a, \beta)$ that fixes $L \equiv L_{\text {phys }}$, scale $\beta$ to keep
L constant towards smaller lattice spacings via PT formula ( $\mathrm{g}_{0}<\mathrm{g}_{0}^{\prime}$ )

$$
\begin{aligned}
\frac{a\left(g_{0}^{2}\right)}{a\left(\left(g_{0}^{\prime}\right)^{2}\right)}= & e^{-\left[g_{0}^{-2}-\left(g_{0}^{\prime}\right)^{-2}\right] /\left(2 b_{0}\right)}\left[g_{0}^{2} /\left(g_{0}^{\prime}\right)^{2}\right]^{-b_{1} /\left(2 b_{0}^{2}\right)} \\
& \times\left\{1+q \cdot\left[g_{0}^{2}-\left(g_{0}^{\prime}\right)^{2}\right]+\mathrm{O}\left(\left(g_{0}^{\prime}\right)^{4}\right)\right\}
\end{aligned}
$$

3-loop contribution to $q$ (from the $\beta$-function) not known for LW action $\rightarrow$ only universal parts used

| $\mathrm{L} / \mathrm{a}$ | 12 | 16 | 20 | 24 |
| :---: | :---: | :---: | :---: | :---: |
| $\beta$ | 3.3 | 3.512 | 3.676 | 3.810 |

- $\beta \in[3.3,3.4] \sim a \approx 0.09 \mathrm{fm} \rightarrow$ spatial volume of extent $L \approx 1.2 \mathrm{fm}$
- Mass-independent improvement / renormalization scheme:

3 mass-degenerate quarks, where in practice $\kappa$ is tuned s.th. the bare PCAC mass (with 1-loop $c_{A}$ ) is reasonably constant resp. just small

## Simulations

Action

- Tree-level Symanzik improved (LW) gauge action
- NP'ly O(a) improved three-flavour Wilson fermion action: $\mathrm{c}_{\mathrm{sw}}\left(\mathrm{g}_{0}^{2}\right)$
[Bulava \& Schaefer, NPB874(2013)188, arXiv:1304.7093]
Dynamical $\mathrm{N}_{\mathrm{f}}=2+1$ simulations / Algorithm / Measurements
- Generation of gauge configurations by the openQCD code with Schrödinger functional BCs
[Lüscher \& Schaefer, CPC184(2013)519, arXiv:1206.2809]
- quark doublet: HMC with frequency splitting of the quark determinant
- stabilizing twisted-mass regulator not necessary in most cases
- two- and three-level integration schemes
- 3rd quark: Zolotarev rational approximation in RHMC algorithm, which is corrected for with stochastically estimated reweighting factors
- Computation of SF correlation functions and derived quantities

Schrödinger functional setup

- $\theta=0$, vanishing background field
- $T=(3 / 2) \cdot L \rightarrow$ re-use configurations to also determine $Z_{A}$


## Results

## Data ensembles

| $\mathrm{L} / \mathrm{a}$ | $\mathrm{T} / \mathrm{a}$ | $\beta$ | k | $\mathrm{N}_{\mathrm{tr}}$ | $\mathrm{am}_{\mathrm{PCAC}}$ | $\overline{\mathrm{g}}_{\mathrm{GF}}^{2}(\mathrm{~L})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 17 | 3.3 | 0.13652 | 5120 | $-0.00096(71)$ | $18.12(21)$ |
| 12 | 17 | 3.3 | 0.13660 | 6524 | $-0.0086(6)$ | $16.92(13)$ |
| 16 | 23 | 3.512 | 0.13700 | 10240 | $0.0064(2)$ | $16.49(13)$ |
| 16 | 23 | 3.512 | 0.13703 | 4096 | $0.0056(3)$ | $16.85(20)$ |
| 16 | 23 | 3.512 | 0.13710 | 12288 | $0.0024(2)$ | $16.11(14)$ |
| 20 | 29 | 3.676 | 0.13680 | 3548 | $0.0139(2)$ | $16.52(30)$ |
| 20 | 29 | 3.676 | 0.13700 | 7616 | $0.0066(1)$ | $15.54(14)$ |
| 24 | 35 | 3.810 | 0.13712 | 7724 | $-0.00269(8)$ | $13.90(11)$ |

- Acceptance rates $\gtrsim 0.90$; trajectory length $=2 \Rightarrow \mathrm{~N}_{\mathrm{MDU}}=2 \mathrm{~N}_{\mathrm{tr}}$
- Measurements: usually $\mathrm{N}_{\text {meas }}=\mathrm{N}_{\text {tr }} / 4$, seperated by 8 MDU's
- ampCAC, via projected correlators (see below), with $c_{A}$ from 1-loop PT
[Aoki, Frezzotti \& Weisz, NPB540(1999)501, hep-lat/9808007]
- Check LCP by gradient flow coupling $\left.\overline{\mathrm{g}}_{\mathrm{GF}}^{2} \propto \mathrm{t}^{2}\left\langle\mathrm{E}\left(\mathrm{t}, \mathrm{x}_{0}\right)\right\rangle\right|_{\substack{\mathrm{t}_{0}=(0.35 \mathrm{~L})^{2} / 8}} ^{\mathrm{x}_{0}, \mathrm{~T} / 2}$


## Results

## Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t=(c \cdot L)^{2} / 8$ with $c=0.35$







- $\mathrm{L} / \mathrm{a}=12, \mathrm{~T} / \mathrm{a}=17, \mathrm{~K}=0.13652$
- 1024 MDU



- $\mathrm{L} / \mathrm{a}=12, \mathrm{~T} / \mathrm{a}=17, \mathrm{\kappa}=0.13652$
- 1024 MDU


## Results

## Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t=(c \cdot L)^{2} / 8$ with $c=0.35$


- $\mathrm{L} / \mathrm{a}=12, \mathrm{~T} / \mathrm{a}=17, \mathrm{~K}=0.13652$
- 1024 MDU
- $\mathrm{L} / \mathrm{a}=12, \mathrm{~T} / \mathrm{a}=17, \mathrm{\kappa}=0.13652$
- 1024 MDU


## Results

## Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t=(c \cdot L)^{2} / 8$ with $c=0.35$




- $\mathrm{L} / \mathrm{a}=16, \mathrm{~T} / \mathrm{a}=23, \mathrm{k}=0.1370$
- 10240 MDU
- $\mathrm{L} / \mathrm{a}=16, \mathrm{~T} / \mathrm{a}=23, \mathrm{\kappa}=0.1371$
- 8192 MDU


## Results

## Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t=(c \cdot L)^{2} / 8$ with $c=0.35$




- $\mathrm{L} / \mathrm{a}=20, \mathrm{~T} / \mathrm{a}=29, \mathrm{~K}=0.1370$

- $\mathrm{L} / \mathrm{a}=20, \mathrm{~T} / \mathrm{a}=29, \mathrm{k}=0.1370$
- $\approx 1900$ MDU
(replicum \#1)
$0 \approx 1900 \mathrm{MDU}$


## Results

## Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t=(c \cdot L)^{2} / 8$ with $c=0.35$





- $\mathrm{L} / \mathrm{a}=20, \mathrm{~T} / \mathrm{a}=29, \mathrm{k}=0.1370$
- $\approx 1900 \mathrm{MDU}$
- $\mathrm{L} / \mathrm{a}=20, \mathrm{~T} / \mathrm{a}=29, \mathrm{~K}=0.1370$
- $\approx 1900 \mathrm{MDU}$


## Results

## Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t=(c \cdot L)^{2} / 8$ with $c=0.35$





- $\mathrm{L} / \mathrm{a}=24, \mathrm{~T} / \mathrm{a}=35, \mathrm{k}=0.13712$
- $\mathrm{L} / \mathrm{a}=24, \mathrm{~T} / \mathrm{a}=35, \mathrm{k}=0.13712$
- 2048 MDU
(replicum \#1)
- 2048 MDU


## Results

## Analysis of autocorrelations

Normalized autocorrelations functions $\rightarrow$ Largest autocorrelation times at:


- Smoothed action: $\tau_{\text {int }} \approx 20-30$


- $\mathrm{L} / \mathrm{a}=20, \mathrm{~T} / \mathrm{a}=29, \mathrm{\kappa}=0.1370$
- Topol. charge: $\tau_{\text {int }} \approx 60-70$
- $\mathrm{L} / \mathrm{a}=24, \mathrm{~T} / \mathrm{a}=35, \mathrm{k}=0.13712$
- Smoothed action: $\tau_{\text {int }} \approx 100$
- $\mathrm{Q}_{\text {top }}$ does not tunnel through sectors, i.e., it is frozen to 0


## Results

Determination of the eigenvectors $\eta^{(0)}$ and $\eta^{(1)}$ of the matrix $F_{1}\left(\omega_{i}^{\prime}, \omega_{\mathfrak{j}}\right)$

- They have a well-defined continuum limit along a LCP, as long as the wave functions depend on physical scales only
$\rightarrow$ no considerable dependence on the lattice spacing observed
- We thus fix the vectors for once from the analysis of a representative data ensemble and regard this as part of the improvement condition $\rightarrow$ our choice is from $\mathrm{L} / \mathrm{a}=16$ and $\mathrm{k}=0.13703$, giving

$$
\begin{aligned}
& \eta^{(0)}=(0.5317(3), 0.5977(1), 0.6000(2)) \\
& \eta^{(1)}=(0.843(5),-0.31(6),-0.44(6))
\end{aligned}
$$

Then:

$$
c_{A} \equiv-\frac{1}{a} \cdot \frac{r\left(x_{0} ; \omega_{\pi^{(1)}}\right)-r\left(x_{0} ; \omega_{\pi^{(0)}}\right)}{s\left(x_{0} ; \omega_{\pi^{(1)}}\right)-s\left(x_{0} ; \omega_{\pi^{(0)}}\right)}
$$

$$
r(x ; \omega)=\frac{\frac{1}{2}\left(\partial_{0}+\partial_{0}^{*}\right) f_{A}\left(x_{0} ; \omega\right)}{2 f_{P}\left(x_{0} ; \omega\right)} \quad s(x ; \omega)=\frac{\partial_{0} \partial_{0}^{*} f_{P}\left(x_{0} ; \omega\right)}{2 f_{P}\left(x_{0}\right)}
$$

$\left(\omega_{\pi^{(0)}}, \omega_{\pi^{(1)}}\right.$ define the states $\beta, \delta$ above, while $|\alpha\rangle,|\gamma\rangle$ have vacuum quantum numbers)

## Results

Representative data ensemble with $L / a=16, \beta=3.512$ and $\kappa=0.13703$
With the eigenvectors, project the CFs to the (approximate) ground \& 1st excited state: $\mathrm{f}_{\mathrm{A} / \mathrm{P}}\left(\mathrm{x}_{0} ; \omega_{\pi^{(0)}}\right), \mathrm{f}_{\mathrm{A} / \mathrm{P}}\left(\mathrm{x}_{0} ; \omega_{\pi^{(1)}}\right) \rightarrow$ effective mass of $\mathrm{f}_{\mathrm{P}}$


- The two states are clearly separated up to $x_{0} \approx 12 a$
- Energy of 1st excited state still acceptably below the cutoff $a^{-1}$ $\rightarrow$ smaller volumes may introduce significant residual $\mathrm{O}\left(\mathrm{a}^{2}\right)$ effects
- Sensitivity to $c_{A}: a \Delta s=a\left[s\left(x_{0} ; \omega_{\pi^{(1)}}\right)-s\left(x_{0} ; \omega_{\pi^{(0)}}\right)\right]=a\left(m_{\pi^{(1)}}^{2}-m_{\pi^{(0)}}^{2}\right)$


## Results

Representative data ensemble with $L / a=16, \beta=3.512$ and $\kappa=0.13703$

Left: $a \Delta r\left(x_{0}\right) \& a^{2} \Delta s\left(x_{0}\right)$


Right: local / "effective" $c_{A}\left(x_{0}\right)$


- Final definition of $c_{A}$ from the improvement condition:

Fix $x_{0}=\mathrm{L} / 3$, as it is already in the asymptotic regime, still has good signal-to-noise ratio, and states with energy gap dominate the CFs

- Little variation for $x_{0} \gtrsim 5 a$ indicates that high-energy states, which could contribute large $O(a)$ ambiguities, are reasonably suppressed


## Results

Effective mass of projected CFs from the scaled/matched lattices


## Results

Effective $c_{A}\left(x_{0}\right)$ from the scaled/matched lattices





## Results

Observation from our MC histories on the smoothed $\mathrm{Q}_{\text {top }}$ : The simulations with $\mathrm{L} / \mathrm{a}=24$ (i.e., at smallest a) sample the non-trivial topological sectors insufficiently
$\Rightarrow$ Apply two kinds of analyses to compute $\mathrm{c}_{\mathrm{A}}$ :
1.) Analysis including all topological charge sectors, but excluding the $\mathrm{L} / \mathrm{a}=24, \beta=3.81$ data ensemble
2.) Analysis restriced to sector with fixed topological charge, $\mathrm{Q}_{\text {top }}=0$

$$
\left.\langle\mathrm{O}\rangle\right|_{\mathrm{Q}_{\text {top }}=0}=\frac{\left\langle\mathrm{O} \cdot \delta_{\left.\mathrm{Q}_{\text {top }}, 0\right\rangle}\right.}{\left\langle\delta_{\left.\mathrm{Q}_{\text {top }, 0}\right\rangle}\right.} \quad \delta_{\mathrm{Q}_{\text {top }, 0}} \equiv \Theta\left(\mathrm{Q}_{\text {top }}+0.5\right) \Theta\left(0.5-\mathrm{Q}_{\mathrm{top}}\right)
$$

(Note: Ward identities should hold in any topological sector)
Error estimation:

- binned Jackknife of concatenated data from different replica (bin size larger than resp. comparable to $\tau_{\text {int }}$ and $>50-100$ bins)
- checked with $\Gamma$-method studying autocorrelation functions


## Results

$c_{A}$ as function of $g_{0}^{2}$

| lattice | $\beta$ | K | $\mathrm{c}_{\mathrm{A}}(\mathrm{L} / 3)$ | $\left.\mathrm{c}_{\mathrm{A}}(\mathrm{L} / 3)\right\|_{\mathrm{Q}_{\text {top }}=0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $12^{3} \times 17$ | 3.3 | 0.13652 | $-0.0615(7)$ | $-0.0630(10)$ |
| $12^{3} \times 17$ | 3.3 | 0.13660 | $-0.0604(5)$ | - |
| $16^{3} \times 23$ | 3.512 | 0.13700 | $-0.0425(7)$ | $-0.0410(11)$ |
| $16^{3} \times 23$ | 3.512 | 0.13703 | $-0.0408(7)$ | - |
| $16^{3} \times 23$ | 3.512 | 0.13710 | $-0.0414(6)$ | $-0.0415(8)$ |
| $20^{3} \times 29$ | 3.676 | 0.13680 | $-0.0353(6)$ | $-0.0345(19)$ |
| $20^{3} \times 29$ | 3.676 | 0.13700 | $-0.0324(5)$ | $-0.0320(13)$ |
| $24^{3} \times 35$ | 3.810 | 0.13712 | $-0.0243(6)$ | $-0.0248(8)$ |

$\checkmark$ Analysis restriced to the sector with zero topological charge yields consistent results (with larger statistical errors though)
$\checkmark$ Small violations (approximately within $\left|a m_{\text {PCAC }}\right|<0.015$ ) of the "constant quark mass condition" negligible

## Results

$c_{A}$ as function of $g_{0}^{2}$


Smooth interpolation based on functional form constrained to 1-loop PT:

$$
c_{A}\left(g_{0}^{2}\right)=-0.006033 g_{0}^{2} \times \frac{1-0.19(2) g_{0}^{2}}{1-0.486(3) g_{0}^{2}}
$$

- Fit function is from analysis over all topological sectors, but excluding the $\mathrm{L} / \mathrm{a}=24$ data point owing to the missing topology sampling
- Compatible to fit in the trivial sector with all ensembles


## Conclusions \& Outlook

$\checkmark$ Non-perturbative improvement condition for $c_{A}$ via PCAC and approximate projection method by wave functions, resembling ground \& 1st excited external pseudoscalar states, works well
$\checkmark$ By variation of boundary wave functions in Schrödinger functional correlation functions, a (enhanced) sensitivity $\propto m_{\pi^{(1)}}^{2}-m_{\pi^{(0)}}^{2}$ on $c_{A}$ can be obtained

2do: Re-analysis of a few data ensembles with the fully available statistics

2do: Investigation of uncertainties due to deviating from the LCP
$(\rightarrow$ e.g., adding a further ensemble with $L / a=16, \beta=3.47$ )

2do: Determination of $Z_{A}$ from the same ensembles
$(\rightarrow$ talk by C. Wittemeier)


[^0]:    

