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Motivation

Inherent O(a) discretization errors of Wilson fermions are systematically
removable via Symanzik improvement, by adding ...

... a dimension–5 term to the action (Sheikoleslami-Wohlert term ∝ csw)

... dimension–4 terms to quark bilinear composite operators

Improvement & Renormalization pattern of the axial vector current

[
(AI)

a
µ

]
R
(x) = ZA

[
Aaµ(x) + a cA

1

2

(
∂µ + ∂∗µ

)
Pa(x)

]

Aaµ(x) = ψ̄(x) Ta γµγ5ψ(x) Pa(x) = ψ̄(x) Ta γ5ψ(x)

Prominent applications of the improved (& renormalized) axial current:

PCAC quark masses, e.g., for tuning Nf = 2 + 1(+1) simulations

Pseudoscalar decay constants fPS, e.g., for scale setting with fK
⇒ Non-perturbative determination of improvement coefficient cA desired

[ for ZA, see next talk by Christian Wittemeier ]



Strategy

Preferable criteria for a sensible improvement condition:
1.) Large sensitivity for L & 0.8 fm and low-energy states with E� a−1

→ variation of boundary wave functions in PCAC with external states
2.) Imposing improvement conditions at all physical scales kept fixed
→ define cA on a line of constant physics (LCP)
⇒ O(a) ambiguities disappear smoothly towards the continuum limit
⇒ avoid potentially large O(a) ambiguities in cA itself

By this approach, cA is known in QCD with dynamical Wilson quarks for ...
... Nf = 2 with plaquette gauge action

[ LPHAA
Collaboration , JHEP0503(2005)029, hep-lat/0503003 ]

... Nf = 3 with Iwasaki gauge action
[ LPHAA

Collaboration & CP-PACS/JLQCD, JHEP0704(2007)092, hep-lat/0703006 ]

Here:
Nf = 3 with tree-level Symanzik improved (aka ”Lüscher-Weisz”)
gauge action
[ LPHAA

Collaboration , Bulava, Della Morte, H. & Wittemeier, PoS LATTICE2013(2013)311, arXiv:1312.3591 ]



Strategy
1.) PCAC relation with different external states

Basic idea:
The PCAC quark mass, derived from an operator identity, is independent
of external states and the insertion point up to cutoff effects

m(x;α,β) = r(x;α,β) + a cA ·s(x;α,β) + O(a2)

r(x;α,β) =
〈α | 12 (∂µ + ∂∗µ)A

a
µ(x) |β 〉

2 〈α |Pa(x) |β 〉

s(x;α,β) =
〈α |∂µ∂

∗
µP
a(x) |β 〉

2 〈α |Pa(x) |β 〉

Continuum: mPCAC independent of external states |α 〉, |β 〉, and x
Lattice: O(a) ambiguities without improvement

⇒ Improvement condition:
From two sets of external states and insertion points:

m(x;α,β)
!
= m(y;γ, δ) ⇐⇒ −cA ≡

∆r

a∆s
=

1

a
· r(x;α,β) − r(y;γ, δ)

s(x;α,β) − s(y;γ, δ)



Strategy
1.) PCAC relation with different external states

Implementation in finite-volume QCD with Schrödinger functional BCs
(periodic BCs in space, Dirichlet in time; finite-volume renormalization scheme)

Use correlators with spatial trial wave functions ω at the boundaries:

fA(x0;ω) = −
a3

3L6

∑
x

〈Aa0 (x)Oa(ω) 〉

fP(x0;ω) = −
a3

3L6

∑
x

〈Pa(x)Oa(ω) 〉

F1(ω
′,ω) = −

1

3L6
〈O ′a(ω ′)Oa(ω) 〉

Oa(ω) = a6
∑
x,y

ζ(x) Ta γ5ω(x− y)ζ(y)

T

time x

0

space

time

0

space

T

Then (where also a value for x0 must be specified):

r(x0;ω) =
1
2 (∂0 + ∂

∗
0) fA(x0;ω)

2 fP(x0;ω)
s(x0;ω) =

∂0∂
∗
0 fP(x0;ω)

2 fP(x0;ω)



Strategy
1.) PCAC relation with different external states

Choose wave functions ωπ(0) and ωπ(1) s. th. operator Oa(ω) couples
only to the ground and first excited state in the pseudoscalar channel

Approximation of ωπ(0) and ωπ(1)

Employ a basis of three (spatially periodic) wave functions

ωi(x) = Ni
∑
n∈Z3

ωi
(
| x− nL |

)
i = 1, . . . , 3

ω1(r) = e−r/a0 ω2(r) = r e−r/a0 ω3(r) = e−r/(2a0)

with normalizationNi and a0 some physical length scale (set to L/6)

F1(ω
′
i,ωj) | i,j=1,2,3 becomes a positive & symmetric 3× 3 matrix,

whose eigenvalues λ(0) > λ(1) > λ(2) and (normalized) eigenvectors
η(0),η(1),η(2) can be calculated by diagonalization

Now approximate ωπ(0) and ωπ(1) by the 1st and 2nd eigenvectors:

ωπ(0) ≈
∑3
i=1 η

(0)
i ωi ωπ(1) ≈

∑3
i=1 η

(1)
i ωi



Strategy
2.) Line of constant physics

Simulations for cA performed along a line of constant physics (LCP)

Constant physics condition:
Starting from an initial pair (L/a,β) that fixes L ≡ Lphys, scale β to keep
L constant towards smaller lattice spacings via PT formula (g0 < g ′0)

a(g20)

a
(
(g ′0)

2
) = e−[g−2

0 −(g ′0)
−2 ]/(2b0)

[
g20/(g

′
0)

2
]−b1/(2b

2
0)

×
{

1 + q ·
[
g20 − (g ′0)

2
]
+ O

(
(g ′0)

4
)}

3–loop contribution to q (from the β–function) not known for LW action
→ only universal parts used

L/a 12 16 20 24

β 3.3 3.512 3.676 3.810

β ∈ [3.3, 3.4] ∼ a ≈ 0.09 fm → spatial volume of extent L ≈ 1.2 fm
Mass-independent improvement / renormalization scheme:
3 mass-degenerate quarks, where in practice κ is tuned s.th. the bare
PCAC mass (with 1–loop cA) is reasonably constant resp. just small



Simulations

Action
Tree-level Symanzik improved (LW) gauge action
NP’ly O(a) improved three-flavour Wilson fermion action: csw(g20)

[ Bulava & Schaefer, NPB874(2013)188, arXiv:1304.7093 ]

Dynamical Nf = 2 + 1 simulations / Algorithm / Measurements
Generation of gauge configurations by the openQCD code with
Schrödinger functional BCs

[ Lüscher & Schaefer, CPC184(2013)519, arXiv:1206.2809 ]

I quark doublet: HMC with frequency splitting of the quark determinant
I stabilizing twisted-mass regulator not necessary in most cases
I two- and three-level integration schemes
I 3rd quark: Zolotarev rational approximation in RHMC algorithm, which

is corrected for with stochastically estimated reweighting factors
Computation of SF correlation functions and derived quantities

Schrödinger functional setup
θ = 0, vanishing background field
T = (3/2) · L → re-use configurations to also determine ZA

[ see next talk by Christian Wittemeier ]



Results
Data ensembles

L/a T/a β κ Ntr amPCAC g2GF(L)

12 17 3.3 0.13652 5120 −0.00096(71) 18.12(21)

12 17 3.3 0.13660 6524 −0.0086(6) 16.92(13)

16 23 3.512 0.13700 10240 0.0064(2) 16.49(13)

16 23 3.512 0.13703 4096 0.0056(3) 16.85(20)

16 23 3.512 0.13710 12288 0.0024(2) 16.11(14)

20 29 3.676 0.13680 3548 0.0139(2) 16.52(30)

20 29 3.676 0.13700 7616 0.0066(1) 15.54(14)

24 35 3.810 0.13712 7724 −0.00269(8) 13.90(11)

Acceptance rates & 0.90; trajectory length = 2 ⇒ NMDU = 2Ntr

Measurements: usually Nmeas = Ntr/4, seperated by 8 MDU’s
amPCAC, via projected correlators (see below), with cA from 1–loop PT

[ Aoki, Frezzotti & Weisz, NPB540(1999)501, hep-lat/9808007 ]

Check LCP by gradient flow coupling g2GF ∝ t2 〈E(t, x0)〉 |
x0=T/2
t=(0.35L)2/8



Results
Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities,
smoothed, i.e., evaluated at Wilson flow time t = (c · L)2/8 with c = 0.35
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L/a = 12, T/a = 17, κ = 0.13652

1024 MDU (replicum #1)
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L/a = 12, T/a = 17, κ = 0.13652

1024 MDU (replicum #2)



Results
Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities,
smoothed, i.e., evaluated at Wilson flow time t = (c · L)2/8 with c = 0.35
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L/a = 12, T/a = 17, κ = 0.13652

1024 MDU (replicum #3)
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L/a = 12, T/a = 17, κ = 0.13652

1024 MDU (replicum #4)



Results
Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities,
smoothed, i.e., evaluated at Wilson flow time t = (c · L)2/8 with c = 0.35
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L/a = 16, T/a = 23, κ = 0.1370

10240 MDU (replicum #1)
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L/a = 16, T/a = 23, κ = 0.1371

8192 MDU (replicum #1)



Results
Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities,
smoothed, i.e., evaluated at Wilson flow time t = (c · L)2/8 with c = 0.35

�
��
�
�
�
��
�
��
�
�	


�

������������

		



	�



	�



	




	�



	�



	�



	�



	�




 �

 


 �

 �

 	


 	�

 	


 	�

 	�

 �




�
�
�


��
�
	�
��
��
�
�	


�

������������

		



	�



	�



	




	�



	�



	�



	�




 �

 


 �

 �

 	


 	�

 	


 	�

 	�

 �




�

�


�



	�
�
��
�
�
�
�

�

������������

�


��

��

�	




	

�

�


 �

 


 �

 �

 	


 	�

 	


 	�

 	�

 �




L/a = 20, T/a = 29, κ = 0.1370

≈ 1900 MDU (replicum #1)
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L/a = 20, T/a = 29, κ = 0.1370

≈ 1900 MDU (replicum #2)



Results
Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities,
smoothed, i.e., evaluated at Wilson flow time t = (c · L)2/8 with c = 0.35
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L/a = 20, T/a = 29, κ = 0.1370

≈ 1900 MDU (replicum #3)
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L/a = 20, T/a = 29, κ = 0.1370

≈ 1900 MDU (replicum #4)



Results
Monte Carlo histories

Wilson plaquette, Yang-Mills action and topological charge densities,
smoothed, i.e., evaluated at Wilson flow time t = (c · L)2/8 with c = 0.35
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Results
Analysis of autocorrelations

Normalized autocorrelations functions → Largest autocorrelation times at:

0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

t

(t)ρ

L/a = 20, T/a = 29, κ = 0.1370

Smoothed action: τint ≈ 20 − 30

0 100 200

­0.2

0.0

0.2

0.4

0.6

0.8

1.0

t

(t)ρ

L/a = 20, T/a = 29, κ = 0.1370

Topol. charge: τint ≈ 60 − 70

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

t

(t)ρ

L/a = 24, T/a = 35, κ = 0.13712

Smoothed action: τint ≈ 100

Qtop does not tunnel through
sectors, i.e., it is frozen to 0



Results

Determination of the eigenvectors η(0) and η(1) of the matrix F1(ω ′i,ωj)

They have a well-defined continuum limit along a LCP, as long as the
wave functions depend on physical scales only
→ no considerable dependence on the lattice spacing observed

We thus fix the vectors for once from the analysis of a representative
data ensemble and regard this as part of the improvement condition
→ our choice is from L/a = 16 and κ = 0.13703, giving

η(0) =
(

0.5317(3) , 0.5977(1) , 0.6000(2)
)

η(1) =
(

0.843(5) , −0.31(6) , −0.44(6)
)

Then:

cA ≡ −
1

a
· r(x0;ωπ(1)) − r(x0;ωπ(0))

s(x0;ωπ(1)) − s(x0;ωπ(0))

r(x;ω) =
1
2 (∂0 + ∂

∗
0) fA(x0;ω)

2 fP(x0;ω)
s(x;ω) =

∂0∂
∗
0 fP(x0;ω)

2 fP(x0)

(ωπ(0) ,ωπ(1) define the states β, δ above, while |α〉, |γ〉 have vacuum quantum numbers)



Results
Representative data ensemble with L/a = 16, β = 3.512 and κ = 0.13703

With the eigenvectors, project the CFs to the (approximate) ground & 1st
excited state: fA/P(x0;ωπ(0)), fA/P(x0;ωπ(1)) → effective mass of fP

The two states are clearly separated up to x0 ≈ 12a

Energy of 1st excited state still acceptably below the cutoff a−1

→ smaller volumes may introduce significant residual O(a2) effects

Sensitivity to cA: a∆s = a[s(x0;ωπ(1)) − s(x0;ωπ(0))] = a(m2
π(1) −m

2
π(0))



Results
Representative data ensemble with L/a = 16, β = 3.512 and κ = 0.13703

Left: a∆r(x0) & a2∆s(x0) Right: local / ”effective” cA(x0)

Final definition of cA from the improvement condition:
Fix x0 = L/3, as it is already in the asymptotic regime, still has good
signal-to-noise ratio, and states with energy gap dominate the CFs

Little variation for x0 & 5a indicates that high-energy states, which
could contribute large O(a) ambiguities, are reasonably suppressed



Results
Effective mass of projected CFs from the scaled / matched lattices



Results
Effective cA(x0) from the scaled / matched lattices



Results

Observation from our MC histories on the smoothed Qtop:
The simulations with L/a = 24 (i.e., at smallest a) sample the non-trivial
topological sectors insufficiently

⇒ Apply two kinds of analyses to compute cA:

1.) Analysis including all topological charge sectors, but excluding the
L/a = 24,β = 3.81 data ensemble

2.) Analysis restriced to sector with fixed topological charge, Qtop = 0

〈O〉
∣∣
Qtop=0

=

〈
O · δQtop,0

〉〈
δQtop,0

〉 δQtop,0 ≡ Θ(Qtop + 0.5)Θ(0.5−Qtop)

(Note: Ward identities should hold in any topological sector)

Error estimation:
I binned Jackknife of concatenated data from different replica

(bin size larger than resp. comparable to τint and > 50 − 100 bins)

I checked with Γ–method studying autocorrelation functions
[ Wolff, CPC156(2004)143, hep-lat/0306017 ]



Results
cA as function of g20

lattice β κ cA(L/3) cA(L/3) |Qtop=0

123 × 17 3.3 0.13652 −0.0615(7) −0.0630(10)

123 × 17 3.3 0.13660 −0.0604(5) —

163 × 23 3.512 0.13700 −0.0425(7) −0.0410(11)

163 × 23 3.512 0.13703 −0.0408(7) —

163 × 23 3.512 0.13710 −0.0414(6) −0.0415(8)

203 × 29 3.676 0.13680 −0.0353(6) −0.0345(19)

203 × 29 3.676 0.13700 −0.0324(5) −0.0320(13)

243 × 35 3.810 0.13712 −0.0243(6) −0.0248(8)

X Analysis restriced to the sector with zero topological charge yields
consistent results (with larger statistical errors though)

X Small violations (approximately within |amPCAC| < 0.015) of the
”constant quark mass condition” negligible



Results
cA as function of g20

Smooth interpolation based on functional form constrained to 1–loop PT:

cA(g
2
0) = −0.006033g20 ×

1 − 0.19(2)g20
1 − 0.486(3)g20

Fit function is from analysis over all topological sectors, but excluding
the L/a = 24 data point owing to the missing topology sampling

Compatible to fit in the trivial sector with all ensembles



Conclusions & Outlook

X Non-perturbative improvement condition for cA via PCAC and
approximate projection method by wave functions, resembling
ground & 1st excited external pseudoscalar states, works well

X By variation of boundary wave functions in Schrödinger
functional correlation functions, a (enhanced) sensitivity
∝ m2

π(1) −m
2
π(0) on cA can be obtained

2do: Re-analysis of a few data ensembles with the fully available statistics

2do: Investigation of uncertainties due to deviating from the LCP
(→ e.g., adding a further ensemble with L/a = 16,β = 3.47)

2do: Determination of ZA from the same ensembles
(→ talk by C. Wittemeier)


