Non-perturbative improvement of the axial current in $N_{\rm f}=3$ lattice QCD

Jochen Heitger

The XXXII International Symposium on Lattice Field Theory Columbia University, New York, USA, June 23 – 28, 2014

June 24, 2014

Motivation

Inherent O(a) discretization errors of Wilson fermions are systematically removable via *Symanzik improvement*, by adding ...

- ho ... a dimension–5 term to the action (Sheikoleslami-Wohlert term $\propto c_{\sf sw}$)
- ... dimension–4 terms to quark bilinear composite operators

Improvement & Renormalization pattern of the axial vector current

$$\left[\left.\left(A_{I}\right)_{\mu}^{\alpha}\right]_{\mathsf{R}}(x) \ = \ \mathsf{Z}_{\mathsf{A}}\left[A_{\mu}^{\alpha}(x) \ + \ \mathfrak{a}\,\mathsf{c}_{\mathsf{A}}\,\frac{1}{2}\left(\vartheta_{\mu} + \vartheta_{\mu}^{*}\right)\mathsf{P}^{\alpha}(x)\right]$$

 $A^{\,a}_{\mu}(x) \;=\; \bar{\psi}(x)\,\mathsf{T}^{a}\,\gamma_{\mu}\gamma_{5}\,\psi(x) \qquad \qquad \mathsf{P}^{a}(x) \;=\; \bar{\psi}(x)\,\mathsf{T}^{a}\,\gamma_{5}\,\psi(x)$

Prominent applications of the improved (& renormalized) axial current:

- PCAC quark masses, e.g., for tuning $N_f = 2 + 1(+1)$ simulations
- Pseudoscalar decay constants f_{PS}, e.g., for scale setting with f_K

 \Rightarrow Non-perturbative determination of improvement coefficient c_A desired [for Z_A , see next talk by Christian Wittemeier]

Strategy

Preferable criteria for a sensible improvement condition:

- 1.) Large sensitivity for $L\gtrsim 0.8\,\text{fm}$ and low-energy states with $E\ll a^{-1}$
 - $\rightarrow\,$ variation of boundary wave functions in PCAC with external states
- 2.) Imposing improvement conditions at all physical scales kept fixed
 - $\rightarrow\,$ define c_A on a line of constant physics (LCP)
 - \Rightarrow O(a) ambiguities disappear smoothly towards the continuum limit
 - \Rightarrow avoid potentially large $\mathsf{O}(\mathfrak{a})$ ambiguities in c_A itself

By this approach, c_A is known in QCD with dynamical Wilson quarks for ...

• ...
$$N_f = 2$$
 with plaquette gauge action

ALPHA Collaboration , JHEP0503(2005)029, hep-lat/0503003]

... N_f = 3 with Iwasaki gauge action

[⁷LPHA & CP-PACS/JLQCD, JHEP0704(2007)092, hep-lat/0703006]

Here:

 N_f = 3 with tree-level Symanzik improved (aka "Lüscher-Weisz") gauge action

[ALPHA, Bulava, Della Morte, H. & Wittemeier, PoS LATTICE2013(2013)311, arXiv:1312.3591]

Strategy 1.) PCAC relation with different external states

Basic idea:

The PCAC quark mass, derived from an operator identity, is independent of external states and the insertion point up to cutoff effects

$$\begin{split} \mathfrak{m}(\mathbf{x}; \alpha, \beta) &= r(\mathbf{x}; \alpha, \beta) + \mathfrak{a} c_{\mathsf{A}} \cdot \mathfrak{s}(\mathbf{x}; \alpha, \beta) + \mathcal{O}(\mathfrak{a}^2) \\ r(\mathbf{x}; \alpha, \beta) &= \frac{\langle \alpha | \frac{1}{2} (\partial_\mu + \partial^*_\mu) A^{\alpha}_\mu(\mathbf{x}) | \beta \rangle}{2 \langle \alpha | P^{\alpha}(\mathbf{x}) | \beta \rangle} \\ \mathfrak{s}(\mathbf{x}; \alpha, \beta) &= \frac{\langle \alpha | \partial_\mu \partial^*_\mu P^{\alpha}(\mathbf{x}) | \beta \rangle}{2 \langle \alpha | P^{\alpha}(\mathbf{x}) | \beta \rangle} \end{split}$$

- $\bullet~$ Continuum: m_{PCAC} independent of external states $\mid\alpha\,\rangle,\mid\beta\,\rangle,$ and x
- ${\ensuremath{\, \circ }}$ Lattice: O(a) ambiguities without improvement
- \Rightarrow Improvement condition:

From two sets of external states and insertion points:

$$\mathfrak{m}(\mathbf{x};\alpha,\beta) \stackrel{!}{=} \mathfrak{m}(\mathbf{y};\gamma,\delta) \quad \Longleftrightarrow \quad -\mathbf{c}_{\mathsf{A}} \equiv \frac{\Delta r}{a\,\Delta s} = \frac{1}{a} \cdot \frac{r(\mathbf{x};\alpha,\beta) - r(\mathbf{y};\gamma,\delta)}{s(\mathbf{x};\alpha,\beta) - s(\mathbf{y};\gamma,\delta)}$$

Implementation in finite-volume QCD with Schrödinger functional BCs (periodic BCs in space, Dirichlet in time; finite-volume renormalization scheme)

• Use correlators with *spatial trial wave functions* ω at the boundaries:

$$f_{A}(x_{0};\omega) = -\frac{a^{3}}{3L^{6}} \sum_{x} \langle A_{0}^{a}(x) \mathcal{O}^{a}(\omega) \rangle$$

$$f_{\mathsf{P}}(x_{0};\omega) = -\frac{a^{3}}{3L^{6}}\sum_{x} \langle \, \mathsf{P}^{\mathfrak{a}}(x) \, \mathfrak{O}^{\mathfrak{a}}(\omega) \, \rangle$$

$$F_{1}(\omega', \omega) = -\frac{1}{3L^{6}} \langle O'^{\alpha}(\omega') O^{\alpha}(\omega) \rangle$$

$$\mathcal{O}^{\mathfrak{a}}(\omega) \ = \ \mathfrak{a}^{6} \sum_{\mathbf{x},\mathbf{y}} \overline{\zeta}(\mathbf{x}) \, \mathsf{T}^{\mathfrak{a}} \, \gamma_{5} \, \omega(\mathbf{x}-\mathbf{y}) \zeta(\mathbf{y})$$

• Then (where also a value for x_0 must be specified): $r(x_0; \omega) = \frac{\frac{1}{2} (\partial_0 + \partial_0^*) f_A(x_0; \omega)}{2 f_P(x_0; \omega)} \qquad s(x_0; \omega) = \frac{\partial_0 \partial_0^* f_P(x_0; \omega)}{2 f_P(x_0; \omega)}$

Strategy 1.) PCAC relation with different external states

Choose wave functions $\omega_{\pi^{(0)}}$ and $\omega_{\pi^{(1)}}$ s. th. operator $\mathfrak{O}^{\mathfrak{a}}(\omega)$ couples only to the ground and first excited state in the pseudoscalar channel

Approximation of $\omega_{\pi^{(0)}}$ and $\omega_{\pi^{(1)}}$

Employ a basis of three (spatially periodic) wave functions

$$\begin{split} &\omega_i(x) &= N_i \sum_{\mathbf{n} \in \mathbb{Z}^3} \overline{\omega}_i \big(\, | \, \mathbf{x} - \mathbf{n} L \, | \, \big) & i = 1, \dots, 3 \\ &\overline{\omega}_1(r) &= e^{-r/\alpha_0} \quad \overline{\omega}_2(r) &= r e^{-r/\alpha_0} \quad \overline{\omega}_3(r) &= e^{-r/(2\alpha_0)} \end{split}$$

with normalization $N_{\rm i}$ and $\, a_0 \,$ some physical length scale (set to L/6)

- $F_1(\omega'_i, \omega_j)|_{i,j=1,2,3}$ becomes a positive & symmetric 3×3 matrix, whose eigenvalues $\lambda^{(0)} > \lambda^{(1)} > \lambda^{(2)}$ and (normalized) eigenvectors $\eta^{(0)}, \eta^{(1)}, \eta^{(2)}$ can be calculated by diagonalization
- Now approximate $\omega_{\pi^{(0)}}$ and $\omega_{\pi^{(1)}}$ by the 1st and 2nd eigenvectors:

$$\omega_{\pi^{(0)}} \approx \sum_{i=1}^{3} \eta_i^{(0)} \omega_i \qquad \qquad \omega_{\pi^{(1)}} \approx \sum_{i=1}^{3} \eta_i^{(1)} \omega_i$$

Strategy 2.) Line of constant physics

Simulations for c_A performed along a *line of constant physics (LCP)*

Constant physics condition:

Starting from an initial pair $(L/a, \beta)$ that fixes $L \equiv L_{phys}$, scale β to keep L constant towards smaller lattice spacings via PT formula $(g_0 < g'_0)$

$$\begin{array}{ll} \frac{\mathfrak{a}(g_0^2)}{\mathfrak{a}\big((g_0')^2\big)} &= & e^{-\left[g_0^{-2} - (g_0')^{-2}\right]/(2b_0)} \left[g_0^2/(g_0')^2\right]^{-b_1/(2b_0^2)} \\ & \times \left\{1 + q \cdot \left[g_0^2 - (g_0')^2\right] + O\big((g_0')^4\big)\right\} \end{array}$$

3–loop contribution to q (from the $\beta\text{-function})$ not known for LW action \rightarrow only universal parts used

L/a	12	16	20	24
β	3.3	3.512	3.676	3.810

• $\beta \in [3.3, 3.4] \sim a \approx 0.09 \, \text{fm} \rightarrow \text{spatial volume of extent } L \approx 1.2 \, \text{fm}$

Mass-independent improvement / renormalization scheme:
 3 mass-degenerate quarks, where in practice κ is tuned s.th. the bare PCAC mass (with 1–loop c_A) is reasonably constant resp. just small

Simulations

Action

- Tree-level Symanzik improved (LW) gauge action
- NP'ly O(a) improved three-flavour Wilson fermion action: $c_{\mathsf{sw}}(g_0^2)$

[Bulava & Schaefer, NPB874(2013)188, arXiv:1304.7093]

Dynamical $N_{f}=2+1\mbox{ simulations}$ / Algorithm / Measurements

 Generation of gauge configurations by the openQCD code with Schrödinger functional BCs

[Lüscher & Schaefer, CPC184(2013)519, arXiv:1206.2809]

- quark doublet: HMC with frequency splitting of the quark determinant
- stabilizing twisted-mass regulator not necessary in most cases
- two- and three-level integration schemes
- 3rd quark: Zolotarev rational approximation in RHMC algorithm, which is corrected for with stochastically estimated reweighting factors
- Computation of SF correlation functions and derived quantities

Schrödinger functional setup

- $\theta = 0$, vanishing background field
- ${\, \bullet \, } T = (3/2) \cdot L \, \rightarrow \,$ re-use configurations to also determine Z_A

[see next talk by Christian Wittemeier]

Results Data ensembles

L/a	T/a	β	к	N _{tr}	am _{PCAC}	$\overline{g}_{\text{GF}}^2(L)$
12	17	3.3	0.13652	5120	-0.00096(71)	18.12(21)
12	17	3.3	0.13660	6524	-0.0086(6)	16.92(13)
16	23	3.512	0.13700	10240	0.0064(2)	16.49(13)
16	23	3.512	0.13703	4096	0.0056(3)	16.85(20)
16	23	3.512	0.13710	12288	0.0024(2)	16.11(14)
20	29	3.676	0.13680	3548	0.0139(2)	16.52(30)
20	29	3.676	0.13700	7616	0.0066(1)	15.54(14)
24	35	3.810	0.13712	7724	-0.00269(8)	13.90(11)

• Acceptance rates \gtrsim 0.90; trajectory length = 2 \Rightarrow N_{MDU} = 2N_{tr}

- Measurements: usually $N_{meas} = N_{tr}/4$, seperated by 8 MDU's
- am_{PCAC}, via projected correlators (see below), with c_A from 1–loop PT [Aoki, Frezzotti & Weisz, NPB540(1999)501, hep-lat/9808007]
- Check LCP by gradient flow coupling $\overline{g}_{GF}^2 \propto t^2 \langle E(t, x_0) \rangle |_{t=(0.35L)^2/8}^{x_0=T/2}$

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t = (c \cdot L)^2/8$ with c = 0.35

L/a = 12, T/a = 17, κ = 0.13652
 1024 MDU (replicum #1)

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t = (c \cdot L)^2/8$ with c = 0.35

L/a = 12, T/a = 17, κ = 0.13652
 1024 MDU (replicum #3)

1024 MDU

(replicum #4)

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t = (c \cdot L)^2/8$ with c = 0.35

L/a = 16, T/a = 23, κ = 0.1370
 10240 MDU (replicum #1)

• L/a = 16, T/a = 23, $\kappa = 0.1371$ • 8192 MDU (replicum #1)

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t = (c \cdot L)^2/8$ with c = 0.35

• L/a = 20, T/a = 29, $\kappa = 0.1370$ • $\approx 1900 \text{ MDU}$ (replicum #1)

• L/a = 20, T/a = 29, $\kappa = 0.1370$ • $\approx 1900 \text{ MDU}$ (replicum #2)

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t = (c \cdot L)^2/8$ with c = 0.35

• L/a = 20, T/a = 29, $\kappa = 0.1370$ • $\approx 1900 \text{ MDU}$ (replicum #3)

 $\label{eq:Lasser} \begin{array}{l} \bullet \ L/a = 20, \, T/a = 29, \, \kappa = 0.1370 \\ \bullet \ \approx 1900 \; \text{MDU} \qquad \mbox{(replicum #4)} \end{array}$

Wilson plaquette, Yang-Mills action and topological charge densities, smoothed, i.e., evaluated at Wilson flow time $t = (c \cdot L)^2/8$ with c = 0.35

2048 MDU

(replicum #1)

Results Analysis of autocorrelations

Normalized autocorrelations functions \rightarrow Largest autocorrelation times at:

• L/a = 20, T/a = 29, $\kappa = 0.1370$

• Smoothed action: $\tau_{int}\approx 20-30$

- L/a = 20, T/a = 29, $\kappa = 0.1370$
- Topol. charge: $\tau_{int} \approx 60 70$

- L/a = 24, T/a = 35, $\kappa = 0.13712$
- Smoothed action: $\tau_{int} \approx 100$
- Q_{top} does not tunnel through sectors, i.e., it is frozen to 0

Results

Determination of the eigenvectors $\eta^{(0)}$ and $\eta^{(1)}$ of the matrix $F_1(\omega'_i, \omega_j)$

- They have a well-defined continuum limit along a LCP, as long as the wave functions depend on physical scales only
 - $\rightarrow\,$ no considerable dependence on the lattice spacing observed
- We thus fix the vectors for once from the analysis of a representative data ensemble and regard this as *part of the improvement condition*
 - $\rightarrow\,$ our choice is from L/a=16 and $\kappa=0.13703,$ giving

$$\begin{split} \eta^{(0)} &= & \left(\, 0.5317(3) \, , \, 0.5977(1) \, , \, 0.6000(2) \, \right) \\ \eta^{(1)} &= & \left(\, 0.843(5) \, , \, -0.31(6) \, , \, -0.44(6) \, \right) \end{split}$$

Then:

$$c_{\mathsf{A}} \ \equiv \ -\frac{1}{a} \cdot \frac{r(x_0; \omega_{\pi^{(1)}}) - r(x_0; \omega_{\pi^{(0)}})}{s(x_0; \omega_{\pi^{(1)}}) - s(x_0; \omega_{\pi^{(0)}})}$$

$$r(x;\omega) = \frac{\frac{1}{2}(\partial_0 + \partial_0^*) f_A(x_0;\omega)}{2 f_P(x_0;\omega)} \qquad s(x;\omega) = \frac{\partial_0 \partial_0^* f_P(x_0;\omega)}{2 f_P(x_0)}$$

 $(\omega_{\pi^{(0)}}, \omega_{\pi^{(1)}})$ define the states β, δ above, while $|\alpha\rangle, |\gamma\rangle$ have vacuum quantum numbers)

Results Representative data ensemble with $L/a=16,\,\beta=3.512$ and $\kappa=0.13703$

With the eigenvectors, project the CFs to the (approximate) ground & 1st excited state: $f_{A/P}(x_0; \omega_{\pi^{(0)}}), f_{A/P}(x_0; \omega_{\pi^{(1)}}) \rightarrow \text{effective mass of } f_P$

- The two states are clearly separated up to $x_0 \approx 12a$
- Energy of 1st excited state still acceptably below the cutoff a⁻¹
 → smaller volumes may introduce significant residual O(a²) effects
- Sensitivity to c_A : $a\Delta s = a[s(x_0; \omega_{\pi^{(1)}}) s(x_0; \omega_{\pi^{(0)}})] = a(m_{\pi^{(1)}}^2 m_{\pi^{(0)}}^2)$

Representative data ensemble with L/a = 16, $\beta = 3.512$ and $\kappa = 0.13703$

Results

• Final definition of c_A from the improvement condition:

Fix $x_0 = L/3$, as it is already in the asymptotic regime, still has good signal-to-noise ratio, and states with energy gap dominate the CFs

 Little variation for x₀ ≥ 5a indicates that high-energy states, which could contribute large O(a) ambiguities, are reasonably suppressed

Results Effective mass of projected CFs from the scaled / matched lattices

Results Effective $c_A(x_0)$ from the scaled / matched lattices

Results

Observation from our MC histories on the smoothed Q_{top} :

The simulations with L/a = 24 (i.e., at smallest a) sample the non-trivial topological sectors insufficiently

- \Rightarrow Apply two kinds of analyses to compute c_A :
- 1.) Analysis including all topological charge sectors, but excluding the L/a= 24, $\beta=$ 3.81 data ensemble
- 2.) Analysis restriced to sector with fixed topological charge, $Q_{top} = 0$

$$\left\langle O \right\rangle \Big|_{Q_{top}=0} = \frac{\left\langle O \cdot \delta_{Q_{top},0} \right\rangle}{\left\langle \delta_{Q_{top},0} \right\rangle} \qquad \delta_{Q_{top},0} \equiv \Theta(Q_{top}+0.5) \Theta(0.5-Q_{top})$$

(Note: Ward identities should hold in any topological sector)

Error estimation:

- binned Jackknife of concatenated data from different replica (bin size larger than resp. comparable to τ_{int} and > 50 − 100 bins)
- checked with Γ-method studying autocorrelation functions

lattice	β	к	$c_A(L/3)$	$c_{A}(L/3) _{Q_{top}=0}$
$12^3 imes 17$	3.3	0.13652	-0.0615(7)	-0.0630(10)
$12^3 imes 17$	3.3	0.13660	-0.0604(5)	—
$16^3 imes 23$	3.512	0.13700	-0.0425(7)	-0.0410(11)
$16^3 imes 23$	3.512	0.13703	-0.0408(7)	—
$16^3 imes 23$	3.512	0.13710	-0.0414(6)	-0.0415(8)
$20^3 \times 29$	3.676	0.13680	-0.0353(6)	-0.0345(19)
$20^3 imes 29$	3.676	0.13700	-0.0324(5)	-0.0320(13)
$24^3 imes 35$	3.810	0.13712	-0.0243(6)	-0.0248(8)

- Analysis restriced to the sector with zero topological charge yields consistent results (with larger statistical errors though)
- $\checkmark~$ Small violations (approximately within $|\alpha m_{PCAC}| < 0.015)$ of the "constant quark mass condition" negligible

$\begin{array}{c} \textbf{Results} \\ c_A \text{ as function of } g_0^2 \end{array}$

Smooth interpolation based on functional form constrained to 1-loop PT:

$$c_{\mathsf{A}}(g_0^2) \ = \ -0.006033 \, g_0^2 \, \times \, \frac{1 - 0.19(2) \, g_0^2}{1 - 0.486(3) \, g_0^2}$$

- Fit function is from analysis over all topological sectors, but excluding the L/a = 24 data point owing to the missing topology sampling
- Compatible to fit in the trivial sector with all ensembles

Conclusions & Outlook

- Non-perturbative improvement condition for c_A via PCAC and approximate projection method by wave functions, resembling ground & 1st excited external pseudoscalar states, works well
- ✓ By variation of boundary wave functions in Schrödinger functional correlation functions, a (enhanced) sensitivity $\propto m_{\pi^{(1)}}^2 m_{\pi^{(0)}}^2$ on c_A can be obtained

2do: Re-analysis of a few data ensembles with the fully available statistics

2do: Investigation of uncertainties due to deviating from the LCP (\rightarrow e.g., adding a further ensemble with L/a = 16, β = 3.47)

2do: Determination of Z_A from the same ensembles

 $(\rightarrow \text{ talk by C. Wittemeier})$