Non-perturbative renormalization of the axial current in $N_{\rm f} = 3$ lattice QCD with Wilson fermions and tree-level improved gauge action

John Bulava Michele Della Morte Jochen Heitger Christian Wittemeier (speaker)

Lattice 2014, Columbia University, New York City

24 June 2014

L Westfälische Wilhelms-Universität Münster

Motivation

Axial current

$$A^a_\mu(x) = \bar{\psi}(x) \; \frac{1}{2} \tau^a \; \gamma_\mu \gamma_5 \; \psi(x)$$

Applications

- PCAC masses
- decay constants F_{PS} (in particular for scale setting with f_{K})
- matching of HQET currents

$$\begin{array}{ll} \text{Improvement:} & (A_{\mathsf{I}})^{\mathfrak{a}}_{\mu}(x) = A^{\mathfrak{a}}_{\mu}(x) + ac_{\mathsf{A}} \cdot \tilde{\partial}_{\mu} P^{\mathfrak{a}}(x) \\ \text{Renormalization:} & (A_{\mathsf{R}})^{\mathfrak{a}}_{\mu}(x) = \mathsf{Z}_{\mathsf{A}} \cdot (1 + b_{\mathsf{A}} a m_{\mathsf{q}}) \cdot (A_{\mathsf{I}})^{\mathfrak{a}}_{\mu}(x) \end{array}$$

- leading coefficient, sensitive to errors
- non-perturbative $Z_{\rm A}$ needed at $g_0^2\approx 1$

Strategy

Strategy from $N_f = 2$

- references:
 - arxiv:hep-lat/0503003 for c_A
 - arxiv:hep-lat/0505026, arxiv:0807.1120 for Z_A
- Schrödinger functional
- pseudoscalar sources with wave function $\omega_{\pi}(\mathbf{x} \mathbf{y})$ approximating ground state
- line of constant physics (LCP)
- renormalization condition based on continuum chiral Ward identity

Renormalization Condition

- based on chiral Ward identity, similar to PCAC
- insertions of two axial currents A_0 and external sources O_{ext}

$$\int d^{3}\mathbf{x} d^{3}\mathbf{y} \,\epsilon^{abc} \left\langle A_{0}^{a}(x) \,A_{0}^{b}(y) \,O_{\text{ext}}^{c} \right\rangle$$
$$-2m \int d^{3}\mathbf{x} d^{3}\mathbf{y} \,\epsilon^{abc} \int_{y_{0}}^{x_{0}} dx_{0}' \left\langle P^{a}(x_{0}',\mathbf{x}) \,A_{0}^{b}(y) \,O_{\text{ext}}^{c} \right\rangle$$
$$= i \int d^{3}\mathbf{y} \left\langle V_{0}^{c}(y) \,O_{\text{ext}}^{c} \right\rangle$$

- RHS due to variation of second A_0 insertion
- non-vanishing PCAC mass is explicitly taken into account to facilitate extrapolation to m = 0

Renormalization Condition

comparison of the chiral extrapolation at $\beta = 5.2$, taken from $N_{\rm f} = 2$:

arxiv:hep-lat/0505026, fig. 2

Setup

Schrödinger functional

- periodic in space, Dirichlet in time
- boundary fields $\zeta,\,\zeta'$ to build sources

Dimensions

T/L = 3/2 $L \approx 1.2$ fm

- trade-off between large infrared cutoff and small $\mathcal{O}(a^2)$ effects arxiv:0807.1120
- big $\mathcal{O}(a^2)$ ambig. @ $N_{\rm f}=$ 2, $L=0.8\,{\rm fm}$

Pseudoscalar Sources at Top and Bottom

$$\begin{split} O_{\text{ext}}^c &= -\frac{1}{6L^6} \; \epsilon^{cde} \; O'^d \; O^e \\ O^e &= \sum_{\mathbf{u}\mathbf{v}} \bar{\zeta}(\mathbf{u}) \; \frac{1}{2} \tau^e \; \gamma_5 \; \omega(\mathbf{u} - \mathbf{v}) \; \zeta(\mathbf{v}) \end{split}$$

Wave Functions

choose WF ω_{π} that couples only to the ground state

• (periodic) basis functions

$$\bar{\omega}_1(r) = e^{-r/r_0} \qquad \bar{\omega}_2(r) = r \cdot e^{-r/r_0} \qquad \bar{\omega}_3 = e^{-r/(2r_0)}$$
$$\omega_i(x) = N_i \sum_{\mathbf{n} \in \mathbb{Z}^3} \bar{\omega}_i(|x - \mathbf{n}L|)$$

(r₀: some physical length scale)

• determine eigenvalues $\lambda^{(0)} > \lambda^{(1)} > \lambda^{(2)}$ and eigenvectors $\eta^{(0)}$, $\eta^{(1)}$, $\eta^{(2)}$ of 3 × 3 matrix $F_1(\omega_i, \omega_j)$

 $\eta^{(0)} = (0.53176, 0.59773, 0.59996)$

• approximate ω_{π} by

$$\omega_{\pi} \approx \sum_{i} \eta_{i}^{(0)} \omega_{i}$$

Correlators

• basic Ward identity:

$$\int d^{3}\mathbf{x} d^{3}\mathbf{y} \,\epsilon^{abc} \left\langle A_{0}^{a}(x) \,A_{0}^{b}(y) \,O_{\text{ext}}^{c} \right\rangle$$
$$-2m \int d^{3}\mathbf{x} d^{3}\mathbf{y} \,\epsilon^{abc} \int_{y_{0}}^{x_{0}} dx_{0}^{\prime} \left\langle P^{a}(x_{0}^{\prime},\mathbf{x}) \,A_{0}^{b}(y) \,O_{\text{ext}}^{c} \right\rangle$$
$$= i \int d^{3}\mathbf{y} \left\langle V_{0}^{c}(y) \,O_{\text{ext}}^{c} \right\rangle$$

• in terms of renormalized Schrödinger-functional correlation functions:

$$Z_{\mathsf{A}}^{2} \cdot \left[F_{\mathsf{A}\mathsf{A}}^{\mathsf{I}}(x_{0}, y_{0}) - 2m \cdot \tilde{F}_{\mathsf{P}\mathsf{A}}^{\mathsf{I}}(x_{0}, y_{0}) \right] = F_{1}$$

 $(b_A \text{ term is neglected}, \mathcal{O}(am) \text{ effect})$

$$Z_{\rm A}(g_0^2) = \lim_{m \to 0} \sqrt{F_1} \left[F_{\rm AA}^{\rm I}(x_0, y_0) - 2m \cdot \tilde{F}_{\rm PA}^{\rm I}(x_0, y_0) \right]^{-1/2}$$

Christian Wittemeier (Lattice 2014)

Correlators

$$f_{XY}(x_0, y_0) = -\frac{a^6}{6L^6} \sum_{\mathbf{x}, \mathbf{y}} \varepsilon^{abc} \varepsilon^{cde} \left\langle O'^d \cdot X^a \cdot Y^b \cdot O^e \right\rangle$$

with insertions of
$$A_0^a(x_0), \qquad \partial_0 P^a(x_0), \qquad \tilde{P}^a(x, y_0) = \sum_{t=y_0}^{x_0} w(t) \cdot P^a(t, \mathbf{x})$$

Connected and Disconnected Contributions:

• standard choice: $x_0 = 2/3 \cdot T$ and $y_0 = 1/3 \cdot T$

- implemented in SFCF code and checked against old results
- alternative definition $Z_{A,con}$ with connected only

Simulation Parameters and Status of Results

• possible re-use of configurations from c_A determination

previous talk by J. Heitger

- openQCD code Lüscher, Schaefer (arxiv:1206.2809)
- $N_{\rm f} = 3$ and tree-level-improved (Lüscher–Weisz) action
- $T = 3/2 \cdot L$
- $\theta = 0$, vanishing background field
- β tuned to keep L constant (\approx 1.2 fm)
- κ tuned towards vanishing (PCAC) quark mass

First Results

L/a	T/a	eta	κ	am _{PCAC}	$Z_{A,con}$	Z _A
12	17	3.3	0.13652	-0.00096(71)	0.80(10)	0.65(10)
12	17	3.3	0.13660	-0.0086(6)	0.82(10)	0.63(10)
16	23	3.512	0.13700	+0.0064(2)	0.78(5)	0.76(5)
16	23	3.512	0.13703	+0.0056(3)	-	-
16	23	3.512	0.13710	+0.0024(2)	0.80(5)	0.74(5)
20	29	3.676	0.13680	+0.0139(2) +0.0066(1)	_	_
20	29	3.676	0.13700		0.79(5)	0.79(5)
24	35	3.810	0.13712	-0.00269(8)	_	_

- only $\mathcal{O}(1000)$ MDU analyzed so far
- Z_{A,con} not yet conclusive (need more statistics)
- Z_A : no strong mass dependence observed

Summary

- renormalization condition based on PCAC relation with non-vanishing quark mass
- evaluation in Schrödinger-functional setup
- reuse of configurations from c_A determination

Outlook

- most measurements yet to be done...
- maybe some new simulations at smaller masses
- crosscheck analysis
- determination of Z_V

Thank you!

Christian Wittemeier (Lattice 2014)