# Non-perturbative renormalization of the axial current in $N_{\mathrm{f}}=3$ lattice QCD with Wilson fermions and tree-level improved gauge action 

John Bulava Michele Della Morte Jochen Heitger Christian Wittemeier (speaker)

Lattice 2014, Columbia University, New York City

24 June 2014

## Motivation

Axial current

$$
A_{\mu}^{a}(x)=\bar{\psi}(x) \frac{1}{2} \tau^{a} \gamma_{\mu} \gamma_{5} \psi(x)
$$

## Applications

- PCAC masses
- decay constants $F_{\text {PS }}$ (in particular for scale setting with $f_{\mathrm{K}}$ )
- matching of HQET currents

$$
\begin{aligned}
\text { Improvement: } & \left(A_{\mathrm{l}}\right)_{\mu}^{a}(x) & =A_{\mu}^{a}(x)+a c_{\mathrm{A}} \cdot \tilde{\partial}_{\mu} P^{a}(x) \\
\text { Renormalization: } & \left(A_{\mathrm{R}}\right)_{\mu}^{a}(x) & =Z_{\mathrm{A}} \cdot\left(1+b_{\mathrm{A}} a m_{\mathrm{q}}\right) \cdot\left(A_{\mathrm{I}}\right)_{\mu}^{a}(x)
\end{aligned}
$$

- leading coefficient, sensitive to errors
- non-perturbative $Z_{\mathrm{A}}$ needed at $g_{0}^{2} \approx 1$


## Strategy

Strategy from $N_{f}=2$

- references:
- arxiv:hep-lat/0503003 for $c_{\mathrm{A}}$
- arxiv:hep-lat/0505026, arxiv:0807.1120 for $Z_{A}$
- Schrödinger functional
- pseudoscalar sources with wave function $\omega_{\pi}(\mathbf{x}-\mathbf{y})$ approximating ground state
- line of constant physics (LCP)
- renormalization condition based on continuum chiral Ward identity


## Renormalization Condition

- based on chiral Ward identity, similar to PCAC
- insertions of two axial currents $A_{0}$ and external sources $O_{\text {ext }}$

$$
\begin{gathered}
\int \mathrm{d}^{3} \mathbf{x} \mathrm{~d}^{3} \mathbf{y} \epsilon^{a b c}\left\langle A_{0}^{a}(x) A_{0}^{b}(y) O_{\text {ext }}^{c}\right\rangle \\
-2 m \int \mathrm{~d}^{3} \mathbf{x} \mathrm{~d}^{3} \mathbf{y} \epsilon^{a b c} \int_{y_{0}}^{x_{0}} \mathrm{~d} x_{0}^{\prime}\left\langle P^{a}\left(x_{0}^{\prime}, \mathbf{x}\right) A_{0}^{b}(y) O_{\text {ext }}^{c}\right\rangle \\
=\mathrm{i} \int \mathrm{~d}^{3} \mathbf{y}\left\langle V_{0}^{c}(y) O_{\text {ext }}^{c}\right\rangle
\end{gathered}
$$

- RHS due to variation of second $A_{0}$ insertion
- non-vanishing PCAC mass is explicitly taken into account to facilitate extrapolation to $m=0$


## Renormalization Condition

comparison of the chiral extrapolation at $\beta=5.2$, taken from $N_{\mathrm{f}}=2$ :

arxiv:hep-lat/0505026, fig. 2

## Setup

## Schrödinger functional

- periodic in space, Dirichlet in time
- boundary fields $\zeta, \zeta^{\prime}$ to build sources

Dimensions

$$
T / L=3 / 2 \quad L \approx 1.2 \mathrm{fm}
$$

- trade-off between large infrared cutoff and small $\mathcal{O}\left(a^{2}\right)$ effects arxiv:0807.1120
- big $\mathcal{O}\left(a^{2}\right)$ ambig. @ $N_{\mathrm{f}}=2, L=0.8 \mathrm{fm}$



## Pseudoscalar Sources at Top and Bottom

$$
\begin{aligned}
O_{\mathrm{ext}}^{c} & =-\frac{1}{6 L^{6}} \epsilon^{c d e} O^{\prime d} O^{e} \\
O^{e} & =\sum_{\mathbf{u v}} \bar{\zeta}(\mathbf{u}) \frac{1}{2} \tau^{e} \gamma_{5} \omega(\mathbf{u}-\mathbf{v}) \zeta(\mathbf{v})
\end{aligned}
$$

## Wave Functions

## choose WF $\omega_{\pi}$ that couples only to the ground state

- (periodic) basis functions

$$
\begin{gathered}
\bar{\omega}_{1}(r)=\mathrm{e}^{-r / r_{0}} \quad \bar{\omega}_{2}(r)=r \cdot \mathrm{e}^{-r / r_{0}} \quad \bar{\omega}_{3}=\mathrm{e}^{-r /\left(2 r_{0}\right)} \\
\omega_{i}(x)=N_{i} \sum_{\mathbf{n} \in \mathbb{Z}^{3}} \bar{\omega}_{i}(|x-\mathbf{n} L|)
\end{gathered}
$$

( $r_{0}$ : some physical length scale)

- determine eigenvalues $\lambda^{(0)}>\lambda^{(1)}>\lambda^{(2)}$ and eigenvectors $\eta^{(0)}, \eta^{(1)}$, $\eta^{(2)}$ of $3 \times 3$ matrix $F_{1}\left(\omega_{i}, \omega_{j}\right)$

$$
\eta^{(0)}=(0.53176,0.59773,0.59996)
$$

- approximate $\omega_{\pi}$ by

$$
\omega_{\pi} \approx \sum_{i} \eta_{i}^{(0)} \omega_{i}
$$

## Correlators

- basic Ward identity:

$$
\begin{gathered}
\int \mathrm{d}^{3} \mathbf{x} \mathrm{~d}^{3} \mathbf{y} \epsilon^{a b c}\left\langle A_{0}^{a}(x) A_{0}^{b}(y) O_{\text {ext }}^{c}\right\rangle \\
-2 m \int \mathrm{~d}^{3} \mathbf{x} \mathrm{~d}^{3} \mathbf{y} \epsilon^{a b c} \int_{y_{0}}^{x_{0}} \mathrm{~d} x_{0}^{\prime}\left\langle P^{a}\left(x_{0}^{\prime}, \mathbf{x}\right) A_{0}^{b}(y) O_{\text {ext }}^{c}\right\rangle \\
=\mathrm{i} \int \mathrm{~d}^{3} \mathbf{y}\left\langle V_{0}^{c}(y) O_{\text {ext }}^{c}\right\rangle
\end{gathered}
$$

- in terms of renormalized Schrödinger-functional correlation functions:

$$
Z_{\mathrm{A}}^{2} \cdot\left[F_{\mathrm{AA}}^{\prime}\left(x_{0}, y_{0}\right)-2 m \cdot \tilde{F}_{\mathrm{PA}}^{\prime}\left(x_{0}, y_{0}\right)\right]=F_{1}
$$

( $b_{\mathrm{A}}$ term is neglected, $\mathcal{O}(a m)$ effect)

$$
Z_{\mathrm{A}}\left(g_{0}^{2}\right)=\lim _{m \rightarrow 0} \sqrt{F_{1}}\left[F_{\mathrm{AA}}^{1}\left(x_{0}, y_{0}\right)-2 m \cdot \tilde{F}_{\mathrm{PA}}^{\mathrm{l}}\left(x_{0}, y_{0}\right)\right]^{-1 / 2}
$$

## Correlators

$$
f_{X Y}\left(x_{0}, y_{0}\right)=-\frac{a^{6}}{6 L^{6}} \sum_{\mathbf{x}, \mathbf{y}} \varepsilon^{a b c} \varepsilon^{c d e}\left\langle O^{\prime d} \cdot X^{a} \cdot Y^{b} \cdot O^{e}\right\rangle
$$

with insertions of

$$
A_{0}^{a}\left(x_{0}\right), \quad \partial_{0} P^{a}\left(x_{0}\right)
$$

$$
\tilde{P}^{a}\left(x, y_{0}\right)=\sum_{t=y_{0}}^{x_{0}} w(t) \cdot P^{a}(t, \mathbf{x})
$$

Connected and Disconnected Contributions:


- standard choice: $x_{0}=2 / 3 \cdot T$ and $y_{0}=1 / 3 \cdot T$
- implemented in SFCF code and checked against old results
- alternative definition $Z_{\mathrm{A}, \text { con }}$ with connected only


## Simulation Parameters and Status of Results

- possible re-use of configurations from $c_{\mathrm{A}}$ determination
previous talk by J. Heitger
- openQCD code Lüscher, Schaefer (arxiv:1206.2809)
- $N_{\mathrm{f}}=3$ and tree-level-improved (Lüscher-Weisz) action
- $T=3 / 2 \cdot L$
- $\theta=0$, vanishing background field
- $\beta$ tuned to keep $L$ constant $(\approx 1.2 \mathrm{fm})$
- $\kappa$ tuned towards vanishing (PCAC) quark mass


## First Results

| $L / a$ | $T / a$ | $\beta$ | $\kappa$ | $a m_{\mathrm{PCAC}}$ | $Z_{\mathrm{A}, \text { con }}$ | $Z_{\mathrm{A}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | 17 | 3.3 | 0.13652 | $-0.00096(71)$ | $0.80(10)$ | $0.65(10)$ |
| 12 | 17 | 3.3 | 0.13660 | $-0.0086(6)$ | $0.82(10)$ | $0.63(10)$ |
| 16 | 23 | 3.512 | 0.13700 | $+0.0064(2)$ | $0.78(5)$ | $0.76(5)$ |
| 16 | 23 | 3.512 | 0.13703 | $+0.0056(3)$ | - | - |
| 16 | 23 | 3.512 | 0.13710 | $+0.0024(2)$ | $0.80(5)$ | $0.74(5)$ |
| 20 | 29 | 3.676 | 0.13680 | $+0.0139(2)$ | - | - |
| 20 | 29 | 3.676 | 0.13700 | $+0.0066(1)$ | $0.79(5)$ | $0.79(5)$ |
| 24 | 35 | 3.810 | 0.13712 | $-0.00269(8)$ | - | - |

- only $\mathcal{O}(1000)$ MDU analyzed so far
- $Z_{\mathrm{A}, \text { con }}$ not yet conclusive (need more statistics)
- $Z_{\mathrm{A}}$ : no strong mass dependence observed


## Summary

- renormalization condition based on PCAC relation with non-vanishing quark mass
- evaluation in Schrödinger-functional setup
- reuse of configurations from $c_{\mathrm{A}}$ determination


## Outlook

- most measurements yet to be done...
- maybe some new simulations at smaller masses
- crosscheck analysis
- determination of $Z_{V}$


## Thank you!

