Effects of near-zero Dirac eigenmodes on axial U(1) symmetry at finite temperature

Akio TOMIYA (Osaka Univ.)
Guido Cossu, Hidenori Fukaya, Shoji Hashimoto, Junichi Noaki
for JLQCD collaboration
1. Introduction
Chiral symmetry breaking in QCD ($N_f=2$, $m_{ud}=0$)

$T = 0$

\[
\frac{SU(2)_L \times SU(2)_R \times U(1)_V \times U(1)_A}{SSB} \quad \text{Remains}
\]

$T > T_c$

\[
SU(2)_V \rightarrow SU(2)_L \times SU(2)_R \quad \text{Restored}
\]

\[
U(1)_A \rightarrow ??
\]

Susceptibilities, Dirac Spectrum

Cossu’s talk

This Talk
Dirac Spectrum and Symmetry

\[SU(2)_L \times SU(2)_R \]

Banks-Casher Relation

\[|\rho(0)| = \frac{\sum}{\pi} \]

\[U(1)_A \]

Atiyah-Singer Index Theorem

\[n_+ - n_- = \nu \]

\[n_{\pm} : \# \text{ of chiral zero-modes} \]

Dirac low modes are important for both symmetries
Dirac Spectrum and Symmetry

Aoki-Fukaya-Taniguchi (2012) argued that, if we assume

- SU(2) x SU(2) is restored (\(T > T_c \))
- Ginsparg-Wilson relation is satisfied
- Analyticity in mass

\[\rho = c_3 \lambda^3 + \cdots \]

Spectrum starts from cubic power

\[U(1)_A \text{ anomaly is invisible in the (pseudo) scalar correlators} \]

\[\text{(Vol} \rightarrow \infty) \]

\[m_{ud} \rightarrow 0 \]

*G. Cossu et al (JLQCD 2013) reported a gap in the Dirac spectrum
Cohen(1996) argued that:

If the chiral zero-mode's effect is ignored, and if there is a gap in the Dirac spectrum

\[\rightarrow U(1)_A \text{ breaking susceptibility} \]

\[= \chi_\pi - \chi_\delta \]

\[= \int_0^\infty d\lambda \frac{4m^2 \rho(\lambda)}{(m^2 + \lambda^2)^2} = 0 \]
(Controversial) Previous lattice studies

<table>
<thead>
<tr>
<th>Group</th>
<th>Action</th>
<th>Vol.</th>
<th>Gap</th>
<th>U(1)$_A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>JLQCD(2013)</td>
<td>Overlap Fixed Topology</td>
<td>L=16</td>
<td>Yes</td>
<td>Restored</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\rho \sim \lambda^3 + \ldots$</td>
<td></td>
</tr>
<tr>
<td>Ohno et al (2011)</td>
<td>HISQ</td>
<td>L=32</td>
<td>No</td>
<td>Violated</td>
</tr>
<tr>
<td>LLNL/RBC (2013)</td>
<td>Domain-wall</td>
<td>L=16, 32</td>
<td>No</td>
<td>Violated</td>
</tr>
</tbody>
</table>

What makes the difference: Finite V effects? Fixed topology? Chiral symmetry?
This Work

Finite volume \rightarrow Larger volume

Fixed Topology \rightarrow Tunneling Allowed

Chiral symmetry \rightarrow OV/DW reweighting
Whats’ New in This work?

<table>
<thead>
<tr>
<th>Feature</th>
<th>G.Cossu et al (2013)</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermion</td>
<td>Overlap</td>
<td>Mobius Domain-wall</td>
</tr>
<tr>
<td>GW-rel. Cost</td>
<td>Exact</td>
<td>$m_{\text{res}} \approx 1\text{MeV}$ or lower</td>
</tr>
<tr>
<td>Lat. Size</td>
<td>16</td>
<td>16, 32</td>
</tr>
<tr>
<td>Topology tunneling</td>
<td>Frozen</td>
<td>Allowed</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td>We also try reweighting to OV</td>
</tr>
</tbody>
</table>
Contents

1. Introduction
2. Mobius DW
3. Domain-wall Dirac spectrum
4. Violation of Ginsparg-Wilson relation
5. (Reweighted) overlap Dirac spectrum
6. Summary
2. Mobius DW
Mobius Domain Wall

Overlap:
$$D_N(m) = \frac{1 + m}{2} + \frac{1 - m}{2} \gamma_5 \text{sgn}(H_K).$$

(Satisfy Ginsparg-Wilson relation)

<table>
<thead>
<tr>
<th>Domain Wall</th>
<th>Mobius DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-dim eff. operator</td>
<td>$D^4 = \frac{1 + m}{2} + \frac{1 - m}{2} \gamma_5 \frac{T^{-Ls} - 1}{T^{-Ls} + 1}.$</td>
</tr>
<tr>
<td>$T^{-1} = \frac{1 + H_T}{1 - H_T}$</td>
<td>$D^4 = \frac{1 + m}{2} + \frac{1 - m}{2} \gamma_5 \prod_{s}^{Ls} \frac{T_s^{-1} - 1}{T_s^{-1} + 1}.$</td>
</tr>
<tr>
<td>$H_T = \frac{D_W}{2 + D_W}$</td>
<td>$T_s^{-1} = \frac{1 + \omega_s H_M}{1 - \omega_s H_M}.$</td>
</tr>
<tr>
<td>$H_M = \frac{b D_W}{2 + c D_W}$</td>
<td></td>
</tr>
</tbody>
</table>

New parameter b, c

Parameter L_s

(Ls→∞ : OV)

L_s, b, c

(Ls→∞ : OV)

b and c make m_{res} small

(b=2, c=1, 10^{-1}-10^{-3} smaller m_{res} for Ls=12)
Lattice set up

Gauge action: tree level **Symoznik**
Fermion : Mobius DW(b=2, c=1, Scaled Shamir + Tanh) w/ **Stout** smearing(3)
code : lrolro++ (G. Cossu et al.)
Resource : BG/Q (KEK)

<table>
<thead>
<tr>
<th>$L^3 \times L_t$</th>
<th>β</th>
<th>m_{ud} (MeV)</th>
<th>L_s</th>
<th>m_{res} (MeV)</th>
<th>Temp. (MeV)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16^3 \times 8$</td>
<td>4.07</td>
<td>30</td>
<td>12</td>
<td>2.5</td>
<td>180</td>
<td>488 Conf. every 50 Trj.</td>
</tr>
<tr>
<td>$16^3 \times 8$</td>
<td>4.07</td>
<td>3.0</td>
<td>24</td>
<td>1.4</td>
<td>180</td>
<td>319 Conf. every 20 Trj.</td>
</tr>
<tr>
<td>$16^3 \times 8$</td>
<td>4.10</td>
<td>32</td>
<td>12</td>
<td>1.2</td>
<td>200</td>
<td>480 Conf. every 50 Trj.</td>
</tr>
<tr>
<td>$16^3 \times 8$</td>
<td>4.10</td>
<td>3.2</td>
<td>24</td>
<td>0.8</td>
<td>200</td>
<td>538 Conf. every 50 Trj.</td>
</tr>
<tr>
<td>$32^3 \times 8$</td>
<td>4.10</td>
<td>32</td>
<td>12</td>
<td>1.7</td>
<td>200</td>
<td>175 Conf. every 20 Trj.</td>
</tr>
<tr>
<td>$32^3 \times 8$</td>
<td>4.10</td>
<td>16</td>
<td>24</td>
<td>1.7</td>
<td>200</td>
<td>294 Conf. every 20 Trj.</td>
</tr>
<tr>
<td>$32^3 \times 8$</td>
<td>4.10</td>
<td>3.2</td>
<td>24</td>
<td>-</td>
<td>200</td>
<td>88 Conf. every 10 Trj.</td>
</tr>
</tbody>
</table>
Topological charge changes along HMC

\[L = 16, \ \beta = 4.10, \ m = 0.01, \ L_s = 12 \]
Tc Estimation

Polyakov & Chiral condensate

Chiral Condensate

Above Tc (T=200MeV)

Around Tc (T=180MeV)

Vol. dependence of Polyakov loop
Decreasing of Chiral condensate
3. Domain-wall Dirac spectrum
Observable

Histogram of Dirac operator

\[H_m \psi_i = \lambda_i^m \psi_i \]

\[H_m = \gamma_5 [(1 - m_{ud}) D^4 + m_{ud}] \]

\[D^4 = [\mathcal{P}^{-1} (D^5_{DW}(m = 1))^{-1} D^5_{DW}(m_{ud}) \mathcal{P}]_{11} \]
3. Histogram for DW(T ~ Tc)

$T = 180\text{MeV} \sim T_c (L = 16)$

$\rho(\lambda)$

$\rho(\lambda) \, a^3$

λ

$\lambda - m_{ud} a$

$\lambda - m_{ud} a$

$m_{ud} = 30\text{MeV}$

$m_{res} = 2.5\text{MeV}$

$m_{ud} = 3.0\text{MeV}$

$m_{res} = 1.4\text{MeV}$

Gap? Finite V effect?
3. Histogram for DW (above T_c)

$T=200\text{MeV}>T_c$ ($L=16$)

\[\rho(\lambda) \]

\[\rho(\lambda) \]

$|\lambda^{mal} - m_{uda}|$

$|\lambda^{mal} - m_{uda}|$

$m_{ud}=32\text{MeV}$

$m_{ud}=3.2\text{MeV}$

$m_{res}=1.2\text{MeV}$

$m_{res}=0.8\text{MeV}$

Gap? Finite V effect?
3. Histogram for DW(above T_c)

$T=200\text{MeV} > T_c \ (L=32)$

Very small but non-zero \Rightarrow **Gap is not apparent**

$U(1)$ looks broken
Short summary

$L=32$, $T=200$ MeV $m_{ud}=3.2$MeV No clear Gap

$U(1)_A$ looks broken

Consistent with LLNL/RBC(2013). Then, What is the difference from OV(JLQCD)?

Finite V?

topology tunneling?

Violation of Ginsparg-Wilson relation?
4. Violation of Ginsparg-Wilson relation
Violating of Ginsparg-Wilson relation for each mode

\[g_i \equiv \frac{\psi_i^\dagger \gamma_5 [D \gamma_5 + \gamma_5 D - 2D \gamma_5 D] \psi_i}{\lambda_i^m} \left[\frac{(1 - m_{ud})^2}{2(1 + m_{ud})} \right] \]

\(g_i \) should be zero if GW is satisfied

Cf.

\[m_{\text{res}} = \frac{\sum_i \lambda_i^m (1 + m_{ud})}{(1 - m_{ud})^2 (\lambda_i^m)^2} \sum_i \frac{1}{(\lambda_i^m)^2} g_i \]
Low-modes have significant violation of Ginsparg Wilson relation
5. (Reweighted) Overlap Dirac spectrum
Reweighting to OV

\[
\langle O \rangle_{ov} = \left\langle O \frac{\det D^2_{ov}(m_{ud})}{\det D^2_{DW}(m_{ud})} \frac{\det D^2_{DW}(1/2a)}{\det D^2_{ov}(1/2a)} \right
angle_{DW}
\]

We can measure OV quantity by using DW configuration

\[
\begin{align*}
\langle \rho(\lambda_{DW}) \rangle_{DW} \\
\langle \rho(\lambda_{ov}) \rangle_{DW} \\
\langle \rho(\lambda_{ov}) \rangle_{ov}
\end{align*}
\]

let's compare them!

partially quenched OV

rewighted overlap
$T=200\text{MeV},\ m_{ud}=32\text{MeV}$

L32

- **DW**
 - $\rho(\lambda a)^3$ vs. $|\lambda^{\text{mal}} - m_{ud} a|$ for L32 with DW-sHtTanh-32x8x12-b4.10-M1.00-mud0.01

- **Partially Quenched OV**
 - $\rho(\lambda a)^3$ vs. $|\lambda^{\text{mal}} - m_{ud} a|$ for L32 HovTanhthre0.24m0.01

- **Reweighted OV**
 - Reweighting not available

L16

- **DW**
 - $\rho(\lambda a)^3$ vs. $|\lambda^{\text{mal}} - m_{ud} a|$ for L16 with DW-sHtTanh-16x8x12-b4.10-M1.00-mud0.01

- **Partially Quenched OV**
 - $\rho(\lambda a)^3$ vs. $|\lambda^{\text{mal}} - m_{ud} a|$ for HovTanhthre0.35-Beta4.10-m0.01

- **Reweighted OV**
 - $\rho(\lambda a)^3$ vs. $|\lambda^{\text{mal}} - m_{ud} a|$ for HovTanhthre0.35-Beta4.10-m0.01

Domain-wall and overlap: visible difference.
T=200MeV, $m_{ud}=3.2$MeV

Consistent with LLNL/RBC 2013

Consistent with JLQCD 2013

Isolated chiral zero-modes
T=200MeV, m_{ud}=3.2MeV

<table>
<thead>
<tr>
<th>Observation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Strong violation of Ginsparg-Wilson relation in the low lying mode</td>
<td>• the histograms (DW vs OV) look different</td>
</tr>
<tr>
<td>• Overlap Dirac operator has isolated chiral zero-modes + gap. (DW vs pqOV)</td>
<td>• Exactly chiral zero-modes should disappear in the large volume limit</td>
</tr>
<tr>
<td>• The gap looks stable as Volume increases. (Partially quenched OV L=16 vs L32)</td>
<td>• This gap may suggest $U(1)_A$ symmetry restoration</td>
</tr>
</tbody>
</table>

• We need to confirm this in L=32 overlap (or DW with better chirality) simulations.
6. Summary
Summary

We have studied eigenvalue distribution of DW and (rewighted)overlap Dirac operators above Tc

1. Mobius Domain-wall spectrum
 => $U(1)_A$ is broken. consistent with LLNL/RBC(2013)

2. We found significant violation of chiral symmetry of low-lying modes even when m_{res} is small.

3. OV/DW reweighting shows gap for lighter mass
 => $U(1)_A$ restoration? consistent with JLQCD(2013)

4. More study of finite volume effect is necessary.
 (OV/DW reweighting works only for smaller lattice)
Backup
$T=200\text{MeV}, \ m_{ud}=16\text{MeV}$

(beta=4.10 m=0.005)

L32

DW

$\rho(\lambda) a^3$

0.0005

0.001

0.0015

$I\lambda^m a - m_{ud} a$

L16

DW

$\rho(\lambda) a^3$

0.0005

0.001

0.0015

$I\lambda^m a - m_{ud} a$

Partially Quenched OV

DW

$\rho(\lambda) a^3$

0.0005

0.001

0.0015

$I\lambda^m a - m_{ud} a$

Reweighted OV

Reweighting not available

DW

$\rho(\lambda) a^3$

0.0005

0.001

0.0015

$I\lambda^m a - m_{ud} a$
Reweighting to OV with UV suppressing determinant

\[R_{UVS} = \left(\frac{\det \gamma_5 D_{ov}(m_{ud})}{\det \gamma_5 D_{DW}(m_{ud})} \right)^2 \left(\frac{\det \gamma_5 D_{DW}(M)}{\det \gamma_5 D_{ov}(M)} \right)^2 \]

DW/OV reweighting is UV surpassing determinant. unphysical mode suppressed by heavy unphysical modes M~O(1/a).
- **L16 b4.07**
 - $m_{\text{res}} = 2.5 \text{MeV}$
 - g_i vs $\text{E-val DW-sHtTanh-16x8x12-b4.07-M1.00-m0.01}$

- **L16 b4.10**
 - $m_{\text{res}} = 1.2 \text{MeV}$
 - g_i vs $\text{E-val DW-sHtTanh-16x8x12-b4.10-M1.00-m0.01}$

- **L32 b4.10**
 - $m_{\text{res}} = 1.7 \text{MeV}$
 - g_i vs $\text{E-val DW-sHtTanh-32x8x12-b4.10-M1.00-m0.01}$

- **ma = 0.01**
 - $m \sim 30 \text{MeV}$

- **ma = 0.001**
 - $m \sim 3 \text{MeV}$
 - $m_{\text{res}} = 1.4 \text{MeV}$
 - g_i vs $\text{E-val DW-sHtTanh-16x8x24-b4.10-M1.00-m0.001}$

 - $m_{\text{res}} = 0.8 \text{MeV}$
 - g_i vs $\text{E-val DW-sHtTanh-16x8x24-b4.1.00-m0.001}$

 - $m_{\text{res}} = 1.7 \text{MeV}$
 - g_i vs $\text{E-val DW-sHtTanh-32x8x24-b4.10-M1.00-m0.005}$

 - g_i vs $\text{E-val DW-sHtTanh-32x8x24-b4.1.00-m0.001}$
\[f(x) = a + c^* x^*^3 \]

Variance of residuals (reduced chi-square) = WSSR/ndf : 1.33016

Final set of parameters
<table>
<thead>
<tr>
<th>Asymptotic Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) = 0.000132414 +/- 6.752e-05 (50.99%)</td>
</tr>
<tr>
<td>(c) = 6.76224 +/- 1.104 (16.32%)</td>
</tr>
</tbody>
</table>
Large violation of GW-rel

m_{res}(Next to lowest) history

History of m_{res} from g_{ij}: plot CP-smeared-SymDW-sHtTanh-16x8x24-b4.10-M1.00-mud0.001

Date: 2014/06/04 12:12:19

$Q_{\text{top}}(f_{ij}; \text{Cut off}=2)$

$m_{\text{res}}(g_{ij}; \text{Cut off}=2)$

m_{ud}
Figure 9: Residual mass with the scaled-Shamir kernel and tanh approximation. The results with $L_s = 6, 8, 12, 16$ are plotted as a function of the scale parameter b. $c=1$

\[H_M = \gamma_5 \frac{bD_W}{2 + cD_W}, \]