Lattice 2014 Columbia University New York

Effects of near-zero Dirac eigenmodes on axial U(1) symmetry at finite temperature

Akio TOMIYA(Osaka Univ.)

Guido Cossu, Hidenori Fukaya, Shoji Hashimoto, Junichi Noaki for JLQCD collaboration

1.Introduction

Chiral symmetry breaking in QCD (N_f=2, m_{ud}=0)

 $\underline{SU(2)_{\rm L} \times SU(2)_{\rm R}} \times U(1)_{\rm V} \times \underline{U(1)_{\rm A}}_{\rm Anomaly}$ **SSB** $ightarrow SU(2)_{
m V} imes U(1)_{
m V}$ Remains $T > T_{c}$ $SU(2)_{\rm V} \longrightarrow SU(2)_{\rm L} \times SU(2)_{\rm R}$ Restored $U(1)_{A} \longrightarrow ??$ Susceptibilities, Dirac Spectrum Cossu's talk This Talk

Dirac Spectrum and Symmetry

$$\subleft U(1)_{
m A}$$
 $\subleft U(1)_{
m A}$ Atiyah-Singer Index Theorem $n_+ - n_- =
u$ $n_\pm \ :$ # of chiral zero-modes

Dirac low modes are important for both symmetries

Dirac Spectrum and Symmetry

Aoki-Fukaya-Taniguchi (2012) argued that, if we assume

- \cdot SU(2) x SU(2) is restored ($T>T_c$)
- Ginsparg-Wilson relation is satisfied
- Analyticity in mass

*G.Cossu et al (JLQCD 2013) reported a gap in the Dirac spectrum

Cohen(1996) argued that:

If the chiral zero-mode's effect is ignored, and if there is a **gap in the Dirac spectrum**

-> U(1)_A breaking susceptibility

$$= \chi_{\pi} - \chi_{\delta}$$
$$= \int_{0}^{\infty} d\lambda \frac{4m^{2}\rho(\lambda)}{(m^{2} + \lambda^{2})^{2}} = 0$$

(Controversial) Previous lattice studies

Group	Action	Vol.	Gap	U(1) _A
JLQCD(2013)	Overlap Fixed Topology	L=16	Yes	Restored
Chiu et al (2013)	Optimized Domain-wall	L=16	$\begin{array}{ } \mathbf{Yes?} \\ \rho \sim \lambda^3 + \cdots \end{array}$	Restored
Ohno et al (2011)	HISQ	L=32	No	Violated
LLNL/RBC (2013)	Domain-wall	L=16, 32	No	Violated

Finite V effects ? What makes the difference: Fixed topology ? Chiral symmetry ?

This Work

- Finite volume \rightarrow Larger volume
- Fixed Topology \rightarrow Tunneling Allowed

Chiral symmetry \rightarrow OV/DW reweighting

Whats' New in This work?

	G.Cossu et al (2013)	This Work	
Fermion	Overlap	Mobius Domain-wall	
GW-rel.	Exact	m _{res} ~1MeV or lower	
Cost	××		
Lat. Size	16	16, 32	
Topology tunneling	Frozen	Allowed	
Comment		We also try reweighting to OV	

Contents

- 1. Introduction
- 2. Mobius DW
- 3. Domain-wall Dirac spectrum
- 4. Violation of Ginsparg-Wilson relation
- 5. (Reweighted) overlap Dirac spectrum6. Summary

Akio Tomiya(Osaka Univ.)

2. Mobius DW

Mobius Domain Wall

Edwards-Heller (2000)

Overlap:
$$D_N(m) = \frac{1+m}{2} + \frac{1-m}{2}\gamma_5 \text{sgn}(H_K)$$
 (Satisfy Ginsparg-Wilson relation)

	Domain Wall	Mobius DW
4-dim eff. operator	$D^4 = \frac{1+m}{2} + \frac{1-m}{2}\gamma_5 \frac{T^{-L_s} - 1}{T^{-L_s} + 1}$	$D^{4} = \frac{1+m}{2} + \frac{1-m}{2}\gamma_{5}\frac{\prod_{s}^{Ls}T_{s}^{-1} - 1}{\prod_{s}^{Ls}T_{s}^{-1} + 1}$
	$T^{-1} = \frac{1 + H_T}{1 - H_T} \qquad H_T = \gamma_5 \frac{D_W}{2 + D_W}.$	$T_s^{-1} = \frac{1 + \omega_s H_M}{1 - \omega_s H_M}.$ $H_M = \gamma_5 \frac{bD_W}{2 + cD_W},$
		New parameter b, c
Parameter	L_s (Ls $\rightarrow\infty$: OV)	$L_s, \underline{b, c} $ (Ls $\rightarrow \infty$: OV)
	b an	d c make m _{res} small
12	(b=2	2, c=1, 10^{-1} -10 ⁻³ smaller m _{res} for L _s =12)

Akio Tomiya(Osaka Univ.) Gauge action:tree level Symanzik Fermion :Mobius DW(b=2, c=1, Scaled Shamir + Tanh) w/ Stout smearing(3) code :IroIro++(G. Cossu et al.) Resource :BG/Q(KEK)

$L^3 \times L_t$	β	m_{ud} (MeV)	L_s	$m_{\rm res}({ m MeV})$	Temp.(MeV)	Note
$16^3 \times 8$	4.07	30	12	2.5	180	488 Conf. every 50 Trj.
$16^3 \times 8$	4.07	3.0	24	1.4	180	319 Conf. every 20 Trj.
$16^3 \times 8$	4.10	32	12	1.2	200	480 Conf. every 50 Trj.
$16^3 \times 8$	4.10	3.2	24	0.8	200	538 Conf. every 50 Trj.
$32^3 \times 8$	4.10	32	12	1.7	200	175 Conf. every 20 Trj.
$32^3 \times 8$	4.10	16	24	1.7	200	294 Conf. every 20 Trj.
$32^3 \times 8$	4.10	3.2	24	_	200	88 Conf. every 10 Trj.

Topological charge changes along HMC

14

Tc Estimation

Vol. dependence of Polyakov loop Decreasing of Chiral condensate

Akio Tomiya(Osaka Univ.)

3.Domain-wall Dirac spectrum

Observable

Histogram of Dirac operator

$$H_m \psi_i = \lambda_i^m \psi_i$$

$$H_m = \gamma_5 [(1 - m_{ud})D^4 + m_{ud}]$$

 $D^{4} = [\mathcal{P}^{-1}(D_{\rm DW}^{5}(m=1))^{-1}D_{\rm DW}^{5}(m_{ud})\mathcal{P}]_{11}$

Akio Tomiya(Osaka Univ.)

3.Histogram for DW(T~ Tc)

T=180MeV~Tc(L=16)

3.Histogram for DW(above Tc)

T=200MeV>Tc (L=16)

3.Histogram for DW(above Tc)

T=200MeV>Tc (L=32)

3.Histogram for DW

Short summary L=32, T=200 MeV m_{ud}=3.2MeV No clear Gap U(1)_A looks broken

Consistent with LLNL/RBC(2013). Then, What is the difference from OV(JLQCD)?

Finite V?

topology tunneling?

Violation of Ginsparg-Wilson relation?

Akio Tomiya(Osaka Univ.)

4.Violation of Ginsparg-Wilson relation

Violation of Ginsparg-Wilson relation for each mode

$$g_i \equiv \frac{\psi_i^{\dagger} \gamma_5 [D\gamma_5 + \gamma_5 D - 2D\gamma_5 D] \psi_i}{\lambda_i^m} \left[\frac{(1 - m_{ud})^2}{2(1 + m_{ud})} \right]$$

g_i should be zero if GW is satisfied

Cf.
$$m_{\text{res}} = \frac{\sum_{i} \frac{\lambda_i^m (1+m_{ud})}{(1-m_{ud})^2 (\lambda_i^m)^2} g_i}{\sum_{i} \frac{1}{(\lambda_i^m)^2}}$$

Low-modes have significant violation of Ginsparg Wilson relation

Akio Tomiya(Osaka Univ.)

5.(Reweighted) Overlap Dirac spectrum

Reweighting to OV

$$\langle \mathcal{O} \rangle_{\rm ov} = \left\langle \mathcal{O} \frac{\det D_{\rm ov}^2(m_{ud})}{\det D_{\rm DW}^2(m_{ud})} \frac{\det D_{\rm DW}^2(1/2a)}{\det D_{\rm ov}^2(1/2a)} \right\rangle_{\rm DW}$$

We can measure OV quantity by using DW configuration $\begin{cases} \langle \rho(\lambda_{\rm DW}) \rangle_{\rm DW} \\ \langle \rho(\lambda_{\rm ov}) \rangle_{\rm DW} \end{cases} \text{ partially quenched OV} \\ \langle \rho(\lambda_{\rm ov}) \rangle_{\rm ov} \qquad \text{reweighted overlap} \end{cases}$

Let's compare them!

T=200MeV, mud=32MeV

L32

L16

Domain-wall and overlap: visible difference.

T=200MeV, mud=3.2MeV

L32

L16

$T=200MeV, m_{ud}=3.2MeV$

Observation	
 Strong violation of Ginsparg- Wilson relation in the low lying mode 	 the histograms(DW vs OV) look different
 Overlap Dirac operator has isolated chiral zero-modes + gap. (DW vs pqOV) 	 Exactly chiral zero-modes should disappear in the large volume limit
 The gap looks stable as Volume increases. (Partially quenched OV L=16 vs L32) 	 This gap may suggest U(1)_A symmetry restoration

• We need to confirm this in L=32 overlap (or DW with better chirality) simulations.

Akio Tomiya(Osaka Univ.)

6.Summary

Summary

We have studied eigenvalue distribution of DW and (reweighted)overlap Dirac operators above Tc

- 1. Mobius Domain-wall spectrum => U(1)_A is broken. consistent with LLNL/RBC(2013)
- 2. We found significant violation of chiral symmetry of low-lying modes even when m_{res} is small.
- 3. OV/DW reweighting shows gap for lighter mass $=> U(1)_A$ restoration? consistent with JLQCD(2013)
- 4. More study of finite volume effect is necessary.(OV/DW reweighting works only for smaller lattice)

Akio Tomiya(Osaka Univ.)

Backup

T=200MeV, mud=16MeV

(beta=4.10 m=0.005)

L32

Reweighting to OV with UV suppressing determinant

$$R^{UVS} = \left(\frac{\det \gamma_5 D_{\rm ov}(m_{ud})}{\det \gamma_5 D_{\rm DW}(m_{ud})}\right)^2 \left(\frac{\det \gamma_5 D_{\rm DW}(M)}{\det \gamma_5 D_{\rm ov}(M)}\right)^2$$

DW/OV rewighting is UV surpassing determinant. unphysical mode suppressed by heavy unphysical modes M~O(1/a).

variance of residuals (reduced chisquare) = WSSR/ndf : 1.33016

Large violation of GW-rel

mres(Next to lowest) history

listory

History of m_{res} from g_{ii}: plot CP-smeared-SymDW-sHtTanh-16x8x24-b4.10-M1.00-mud0.001

Date:2014/06/04 12:14:59

0 C

Date:2014/06/04 12:13:41

Figure 9: Residual mass with the scaled-Shamir kernel and tanh approximation. The results with $L_s = 6, 8, 12, 16$ are plotted as a function of the scale parameter b. c=1

$$H_M = \gamma_5 \frac{bD_W}{2 + cD_W},$$