Phase structure and Higgs boson mass in a Higgs-Yukawa model with a dimension-6 operator

Attila Nagy1,2

in collaboration with:
Yen-Jen David Chu3, Karl Jansen2, C.-J. David Lin3,
Bastian Knippschild4 and Kei-Ichi Nagai5

1Humboldt University Berlin; 2NIC, DESY Zeuthen;
3NCTU, Hsinchu; 4HISKP, Bonn; 5KMI Nagoya

June 27th, 2014
Outline

1. Introduction
2. The constraint effective potential
3. Phase structure
4. Mass bounds
5. Summary
Higgs boson and vacuum stability

- Higgs boson mass: 126 GeV

- Electroweak vacuum meta stable for $m_H \lesssim 129$ GeV
 - Only standard model
 - Evolution of all SM parameters up to the Planck scale
 - Meta stability: λ turns negative (at a scale of $10^{8...14}$ GeV)

[Degrassi et al. 2013]
Higgs boson and vacuum stability

- Higgs boson mass: 126 GeV

- Electroweak vacuum meta stable for $m_H \lesssim 129$ GeV
 - Only standard model
 - Evolution of all SM parameters up to the Planck scale
 - Meta stability: λ turns negative (at a scale of $10^{8\ldots14}$ GeV)

- Triviality \rightarrow EW sector just an effective theory

- New physics could appear anywhere between a few TeV or above the Planck scale
Adding higher order operators

- $\lambda_6 \phi^6$ term in the action is allowed

- $\lambda_6 > 0 \rightarrow$ the EW vacuum is stable even with negative λ

- Could emerge as a low energy effect of some higher scale physics

- Very easy extension of the SM
Adding higher order operators

- $\lambda_6 \phi^6$ term in the action is allowed
- $\lambda_6 > 0 \implies$ the EW vacuum is stable even with negative λ
- Could emerge as a low energy effect of some higher scale physics
- Very easy extension of the SM
 - Change the phase structure
 - Influence the Higgs boson mass - New lower bound?
Adding higher order operators

- $\lambda_6 \phi^6$ term in the action is allowed
- $\lambda_6 > 0 \rightarrow$ the EW vacuum is stable even with negative λ
- Could emerge as a low energy effect of some higher scale physics
- Very easy extension of the SM
 - Change the phase structure
 - Influence the Higgs boson mass - New lower bound?
- Investigate the effect of this term for small cutoffs ($\mathcal{O}(\text{TeV})$)
 - Compatibility with 126 GeV Higgs / Bounds to λ_6?
 - Numerically by means of lattice simulations
 - Perturbatively via the constraint effective potential (CEP)
\[S^{\text{cont}}[\bar{\psi}, \psi, \varphi] = \int d^4x \left\{ \bar{t} \dot{t} + \bar{b} \dot{b} + y_b \bar{\psi}_L \varphi \, b_R + y_t \bar{\psi}_L \tilde{\varphi} \, t_R + \text{h.c.} \right\} \\
+ \int d^4x \left\{ \frac{1}{2} (\partial_\mu \varphi)^\dagger (\partial^\mu \varphi) + \frac{1}{2} m_0^2 \varphi^\dagger \varphi + \lambda (\varphi^\dagger \varphi)^2 + \left[\lambda_6 (\varphi^\dagger \varphi)^3 \right] \right\} \]
Higgs-Yukawa model

\[S^{\text{cont}}[\tilde{\psi}, \psi, \varphi] = \int d^4x \left\{ i\bar{\psi}t + b\bar{\phi}b + y_b \bar{\psi}_L \varphi b_R + y_t \bar{\psi}_L \tilde{\varphi} t_R + h.c. \right\} \]

\[+ \int d^4x \left\{ \frac{1}{2} \left(\partial_\mu \varphi \right)^\dagger \left(\partial_\mu \varphi \right) + \frac{1}{2} m_0^2 \varphi^\dagger \varphi + \lambda \left(\varphi^\dagger \varphi \right)^2 + \left(\lambda_6 \left(\varphi^\dagger \varphi \right)^3 \right) \right\} \]

\[S^{\text{lat}}[\Phi] = -\kappa \sum_{x,\mu} \Phi_x^\dagger \left[\Phi_{x+\mu} + \Phi_{x-\mu} \right] + \sum_x \Phi_x^\dagger \Phi_x \]

\[+ \hat{\lambda} \sum_x \left[\Phi_x^\dagger \Phi_x - N_f \right]^2 + \hat{\lambda}_6 \sum_x \left[\Phi_x^\dagger \Phi_x \right]^3 \]

with:

\[\varphi = \sqrt{2\kappa} \left(\frac{\Phi^2 + i\Phi^1}{\Phi^0 - i\Phi^3} \right), \quad \lambda = \frac{\hat{\lambda}}{4\kappa^2}, \quad \lambda_6 = \frac{\hat{\lambda}_6}{8\kappa^3}, \quad m_0^2 = \frac{1 - 2N_f \hat{\lambda} - 8\kappa}{\kappa} \]
Implementation

- Polynomial Hybrid Monte Carlo algorithm

- Overlap fermions \((N_f = 1, \, y_t = y_b) \)

- Details of the code

- Scale setting: renormalized vacuum expectation value of the scalar field:
 \[
 \frac{v_r}{a} = 246 \text{ GeV}
 \]

- Definition of the cutoff: \(\Lambda = \frac{1}{a} = \frac{246 \text{ GeV}}{v_r} \)

- Higgs boson mass: Pole of the real part of the propagator
Introduction

The constraint effective potential

Phase structure

Mass bounds

Summary
Constraint effective potential in the broken phase

[O’Raifeartaigh, et al. 2007; Gerhold et al. 2009]

- Scalar doublet can be decomposed into Higgs and Goldstone modes
- In the broken phase, the CEP explicitly only depends on the zero mode of the Higgs field \(\tilde{h}_0 = \sqrt{V} \tilde{v} \)
- The global minimum of the CEP determines the vev
- The Higgs boson mass is given by the curvature

\[
\frac{dU}{d\tilde{v}} = 0 \bigg|_{\tilde{v} = vev} \quad \frac{d^2U}{d\tilde{v}^2} = m_H^2 \bigg|_{\tilde{v} = vev}
\]
- Keep explicitly the lattice structure
- Perturbative derivation of the CEP not unique
\[U_1(\hat{v}) = U_f(\hat{v}) + \frac{m_0^2}{2} \hat{v}^2 + \lambda \hat{v}^4 + \lambda_6 \hat{v}^6 + 6 \lambda \hat{v}^2 (P_H + P_G) \\
+ \lambda_6 \hat{v}^4 (15P_H + 9P_G) + \lambda_6 \hat{v}^2 (45P_H^2 + 54P_H P_G + 45P_G^2) \]

With the propagator sums \(P_{G/H} \) given by:

\[P_G = \sum_{p \neq 0} \frac{1}{\hat{p}^2} \quad P_H = \sum_{p \neq 0} \frac{1}{\hat{p}^2 + m_H^2} \]

- Explicit appearance of \(m_H \): self consistent solution
\[U_2(\hat{v}) = U_f(\hat{v}) + \frac{m_0^2}{2} \hat{v}^2 + \lambda \hat{v}^4 + \lambda_6 \hat{v}^6 \]
\[+ \frac{1}{2V} \sum_{p \neq 0} \left[\log \left(\hat{p}^2 + m_0^2 + 12\lambda \hat{v}^2 + 30\lambda_6 \hat{v}^4 \right) \right. \]
\[+ 3 \left(\hat{p}^2 + m_0^2 + 12\lambda \hat{v}^2 + 30\lambda_6 \hat{v}^4 \right) \]
\[+ \lambda \left(3 \tilde{P}_{H}^2 + 6 \tilde{P}_{H} \tilde{P}_{G} + 15 \tilde{P}_{G}^2 \right) + \lambda_6 \hat{v}^2 \left(45 \tilde{P}_{H}^2 + 54 \tilde{P}_{H} \tilde{P}_{G} + 45 \tilde{P}_{G}^2 \right) \]
\[+ \lambda_6 \left(15 \tilde{P}_{H}^3 + 27 \tilde{P}_{H}^2 \tilde{P}_{G} + 45 \tilde{P}_{H} \tilde{P}_{G}^2 + 105 \tilde{P}_{G}^3 \right) \]
\[U_2(\hat{v}) = U_f(\hat{v}) + \frac{m_0^2}{2} \hat{v}^2 + \lambda \hat{v}^4 + \lambda_6 \hat{v}^6 \]
\[+ \frac{1}{2V} \sum_{p \neq 0} \left[\log \left(\hat{p}^2 + m_0^2 + 12\lambda \hat{v}^2 + 30\lambda_6 \hat{v}^4 \right) \right. \]
\[+ 3 \left(\hat{p}^2 + m_0^2 + 12\lambda \hat{v}^2 + 30\lambda_6 \hat{v}^4 \right) \]
\[+ \lambda \left(3 \tilde{P}_H^2 + 6 \tilde{P}_H \tilde{P}_G + 15 \tilde{P}_G^2 \right) + \lambda_6 \hat{v}^2 \left(45 \tilde{P}_H^2 + 54 \tilde{P}_H \tilde{P}_G + 45 \tilde{P}_G^2 \right) \]
\[+ \lambda_6 \left(15 \tilde{P}_H^3 + 27 \tilde{P}_H^2 \tilde{P}_G + 45 \tilde{P}_H \tilde{P}_G^2 + 105 \tilde{P}_G^3 \right) \]
\[\tilde{P}_H = \frac{1}{V} \sum_{p \neq 0} \frac{1}{\hat{p}^2 + m_0^2 + 12\hat{v}^2 \lambda + 30\hat{v}^4 \lambda_6} \]
\[\tilde{P}_G = \frac{1}{V} \sum_{p \neq 0} \frac{1}{\hat{p}^2 + m_0^2 + 4\hat{v}^2 \lambda + 6\hat{v}^4 \lambda_6} \]
\[
U_2(\hat{v}) = U_f(\hat{v}) + \frac{m_0^2}{2} \hat{v}^2 + \lambda \hat{v}^4 + \lambda_6 \hat{v}^6 \\
+ \frac{1}{2V} \sum_{p \neq 0} \left[\log \left(\hat{p}^2 + m_0^2 + 12\lambda \hat{v}^2 + 30\lambda_6 \hat{v}^4 \right) \\
+ 3 \left(\hat{p}^2 + m_0^2 + 12\lambda \hat{v}^2 + 30\lambda_6 \hat{v}^4 \right) \right] \\
+ \lambda \left(3 \tilde{P}_H^2 + 6 \tilde{P}_H \tilde{P}_G + 15 \tilde{P}_G^2 \right) + \lambda_6 \hat{v}^2 \left(45 \tilde{P}_H^2 + 54 \tilde{P}_H \tilde{P}_G + 45 \tilde{P}_G^2 \right) \\
+ \lambda_6 \left(15 \tilde{P}_H^3 + 27 \tilde{P}_H^2 \tilde{P}_G + 45 \tilde{P}_H \tilde{P}_G^2 + 105 \tilde{P}_G^3 \right)
\]

\[
\tilde{P}_H = \frac{1}{V} \sum_{p \neq 0} \frac{1}{\hat{p}^2 + m_0^2 + 12\hat{v}^2 \lambda + 30\hat{v}^4 \lambda_6}
\]

\[
\tilde{P}_G = \frac{1}{V} \sum_{p \neq 0} \frac{1}{\hat{p}^2 + m_0^2 + 4\hat{v}^2 \lambda + 6\hat{v}^4 \lambda_6}
\]

- Limited range of validity
1 Introduction

2 The constraint effective potential

3 Phase structure

4 Mass bounds

5 Summary
Set the Yukawa coupling to generate 175 GeV quarks \(m_t = y_t \cdot vev \)

We fix \(\lambda_6 \) - Two setups: \(\lambda_6 = 0.001 \) and \(\lambda_6 = 0.1 \)

A set of negative values \(\lambda \) each

Perform scans in \(\kappa \)

Order parameter: \(vev \)
Simulations vs. CEP $\lambda_6 = 0.001$

- Good agreement for both potentials
Simulations vs. CEP $\lambda_6 = 0.1$

Qualitative agreement for U_1
$\lambda_6 = 0.001$

$\lambda = -0.0085$
Phase structure $\lambda_6 = 0.001, U_1$
Phase structure $\lambda_6 = 0.001, U_2$
Phase structure $\lambda_6 = 0.1, \ U_1$

Attila Nagy (DESY-Zeuthen, HU-Berlin)
Phase structure $\lambda_6 = 0.1$, U_1
Phase structure $\lambda_6 = 0.1, U_1$
1 Introduction

2 The constraint effective potential

3 Phase structure

4 Mass bounds

5 Summary
Procedure

- Stay in the regime of second order transition
- Determine the Higgs boson mass
- Perform infinite volume limit
- Compare the masses with the SM lower bound \((\lambda_6 = 0 \text{ and } \lambda = 0) \) [Gerhold et al. 2009]
Mass vs. cutoff from CEP, $\lambda_6 = 0.001$
Mass vs cutoff from simulations, $\lambda_6 = 0.001$

Preliminary! (No infinite volume extrapolation. Only $24^3 \times 48$ data!)

![Graph showing Higgs boson mass vs cutoff with different values of λ]
Mass vs. cutoff from CEP, $\lambda_6 = 0.1$

![Graph showing the relationship between Higgs boson mass and cutoff in GeV for different values of λ. The graph includes a SM bound and curves for $\lambda = -0.380, -0.385, -0.388, -0.389$.](image-url)
Mass vs cutoff from simulations, $\lambda_6 = 0.1$

Preliminary! (Infinite volume, but still limited statistics)
Introduction

The constraint effective potential

Phase structure

Mass bounds

Summary
We mapped out the phase space of a HY-model including a $\lambda_6 \phi^6$ term.

Regions of first and second order transitions have been found.

A region in parameter space with a metastable vacuum was located.

λ_6 is compatible with the standard model Higgs boson mass.

$\lambda_6 = 0.001$ makes even a decrease of the Higgs boson mass possible.
We mapped out the phase space of a HY-model including a $\lambda_6 \phi^6$ term

Regions of first and second order transitions have been found

A region in parameter space with a metastable vacuum was located

λ_6 is compatible with the standard model Higgs boson mass

$\lambda_6 = 0.001$ makes even a decrease of the Higgs boson mass possible

Outlook:

- Increase the range of λ_6 (to non-perturbative values)
- Establish the nature of the phase transitions numerically
BACKUP
$\lambda_6 = 0.0010$, $\lambda = -0.0085$

\begin{align*}
\lambda_6 &= 0.0010, \quad \lambda = -0.0085 \\
16^3 \times 32 &\quad \text{(red)} \\
32^3 \times 64 &\quad \text{(blue)} \\
64^3 \times 128 &\quad \text{(yellow)} \\
96^3 \times 192 &\quad \text{(green)}
\end{align*}
CEP phase scan

\[\lambda_6 = 0.0010, \lambda = -0.0087 \]

\[v_{eu} \text{ in } a^{-1} \]

\[m_H^2 \text{ in } a^{-2} \]

\[16^3 \times 32 \]
\[32^3 \times 64 \]
\[64^3 \times 128 \]
\[96^3 \times 192 \]
$\lambda_6 = 0.0010, \lambda = -0.0088$

\begin{align*}
\lambda_6 &= 0.0010, \\
\lambda &= -0.0088.
\end{align*}