Few-body physics

 The burden of having 3 particles or more in a box
Raúl Briceño

 rbriceno@jlab.org

lattice

Few-body physics

 The burden of having 3 pantioleo ormure in a box Raûl Briceño 3-1 particles or more rbriceno@jilab.org 2-1
Why few-body physics?

"Few-body problems are present in many branches of physics..."
\& particle physics
e.g., $B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$

First unquenched LQCD calculation:
Horgan, Liu, Meinel \& Wingate (2013)

See poster by M. Wingate this afternoon

Why few-body physics?

"Few-body problems are present in many branches of physics..."
\& particle physics

$$
\text { e.g., } B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}
$$

First unquenched LQCD calculation:
Horgan, Liu, Meinel \& Wingate (2013)

Why few-body physics?

"Few-body problems are present in many branches of physics..."
\& particle physics

$$
\text { e.g., } B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}
$$

```
K*(892):
```

First unquenched LQCD calculation:
Horgan, Liu, Meinel \& Wingate (2013)
$\Phi I\left(J^{P}\right)=1 / 2\left(1^{-}\right)$resonance
\&above $\pi \mathrm{K}$ and $\pi \pi \mathrm{K}$ thresholds ఖjust below $\mathrm{K} \eta \sim K \pi \pi \pi$ threshold

See poster by M. Wingate this afternoon

Why few-body physics?

"Few-body problems are present in many branches of physics..."
\& particle physics
\& nuclear physics
e.g., the "Roper", $\mathrm{N}^{*}(1440)$
Roper:
\& $\mathrm{I}\left(\mathrm{J}^{\mathrm{P}}\right)=1 / 2\left(1 / 2^{+}\right)$resonance
\&above the $\mathrm{N} \pi, \mathrm{N} \pi \pi$ and $\mathrm{N} \pi \pi \pi$ thresholds

Why few-body physics?

"Few-body problems are present in many branches of physics..."
\& particle physics
\& nuclear physics
\& atomic physics
\% condensed matter physics

Four main challenges with few-body systems on the lattice

Interpretation of observables
see talk by W. Kamleh on the implication of the five-quark operators on the nucleon spectrum, Wed. @ 09:00

[Hadron Spectrum Coll.] Dudek, Edwards, Thomas (2012)

Four main challenges with few-body systems on the lattice

Optimal operators

(2) Poor signal/noise

Large number of contractions

Lepage (1989)
M. J. Savage (2010)

Grabowska, Kaplan \& Nicholson (2012)

Detmold and Endres (2014)
[NPLQCD Coll.] Beane, Chang, Cohen, Detmold, Lin, Luu, Orginos, Parreno, Savage, Walker-Loud (2012)

Four main challenges with few-body systems on the lattice

Optimal operators

Poor signal/noise

Large number of contractions
e.g., naïvely ${ }^{4} \mathrm{He}$ has $6!\times 6!=518,400$ contractions!

Interpretation of observables

Some clever tricks:
Detmold \& Savage (2010)
Detmold, Orginos \& Shi (2013)
Doi \& Endres (2013)
Detmold \& Orginos (2013)
Günther, Toth and Varnhorst (2013)

Four main challenges with few-body systems on the lattice

Optimal operators

Poor signal/noise

Large number of contractions

focus of this talk!

Four main challenges with few-body systems on the lattice

Optimal operators

Poor signal/noise

Large number of contractions

JLAB-THY-14-1901
INT-PUB-14-015
INT-PUB-14-015

Nuclear Reactions from Lattice QCD
Raúl A. Briceño ${ }^{1}$, Zohreh Davoudi ${ }^{2,3}$, Thomas C. Luu ${ }^{4}$ ${ }^{1}$ Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, US ${ }^{2}$ Department of Physics, University of Washington, Box 351560, Seattle, WA 98195 , USA
${ }_{4}^{3}$ Institute for Nuclear Theory, Box 351550, Seattle, WA 98195-1550, USA ${ }^{4}$ Institute for Advanced Simulation, Institut für Kernphysik and Jülich Ce
for Hadron Physics, Forschungszentrum Jülich, D- 52425 Jülich, Germany for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
E-mail: rbriceno@jlab.org, davoudi@uw.edu, t.luu@fz-juelich.de
Abstract.
One of the
One of the overarching goals of nuclear physics is to rigorously compute propert of hadronic systems directly from the fundamental theory of strong interactio
Quantum Chromodynamics (QCD). In particular, the hope is to perfo reliable calculations of nuclear reactions which will impact our understanding environments that occur during big bang nucleosynthesis, the evolution of st and supernovae, and within nuclear reactors and high energy/density faciliti Such calculations, being truly ab initio, would include all two-nucleon and thr nucleon (and higher) interactions in a consistent manner. Currently, lattice Q provides the only reliable option for performing calculations of some of the lo energy hadronic observables. With the aim of bridging the gap between latt
QCD and nuclear many-body physics, the Institute for Nuclear Theory helc QCD and nuclear many-body physics, the Institute for Nuclear Theory helc
workshop on Nuclear Reactions from Lattice $Q C D$ on March 2013. In this revi article, we report on the topics discussed in this workshop and the path plann to move forward in the upcoming years.

See RB, Davoudi \& Luu (2014) for a very recent review on the status of few-body physics from the lattice!

How?

\& Correlation functions: three basic representations
$11) C\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\lambda^{\prime}}^{\prime}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\lambda}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle$

$$
=\delta_{\lambda, \lambda^{\prime}} \sum e^{-E_{\lambda, n}\left(x_{0}-y_{0}\right)}\langle 0| \mathcal{O}_{\lambda}^{\prime}(0, \mathbf{P})\left|E_{\lambda, n}\right\rangle\left\langle E_{\lambda, n}\right| \mathcal{O}_{\lambda}^{\dagger}(0,-\mathbf{P})|0\rangle
$$

Operators could be different, but must have same quantum numbers (λ)

How?

© Correlation functions: three basic representations

$$
\begin{aligned}
& 1 \text { 1) } C\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\lambda^{\prime}}^{\prime}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\lambda}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle \\
& =\delta_{\lambda, \lambda^{\prime}} \sum_{n} e^{-E_{\lambda, n}\left(x_{0}-y_{0}\right)}\langle 0| \mathcal{O}_{\lambda}^{\prime}(0, \mathbf{P})\left|E_{\lambda, n}\right\rangle\left\langle E_{\lambda, n}\right| \mathcal{O}_{\lambda}^{\dagger}(0,-\mathbf{P})|0\rangle \\
& 2\left(x_{0}-y_{0}, \mathbf{P}\right)=\frac{1}{Z_{\text {Eucl. }}} \int \mathcal{D}[U, q, \bar{q}] \mathcal{O}_{\lambda^{\prime}}^{\prime}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\lambda}^{\dagger}\left(y_{0},-\mathbf{P}\right) e^{-S_{\text {Eucl. }}}
\end{aligned}
$$

... allows us to evaluate correlation functions numerically

How?

\& Correlation functions: three basic representations

$$
\begin{aligned}
& 12\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\lambda^{\prime}}^{\prime}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\lambda}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle \\
& =\delta_{\lambda, \lambda^{\prime}} \sum_{n} e^{-E_{\lambda, n}\left(x_{0}-y_{0}\right)}\langle 0| \mathcal{O}_{\lambda}^{\prime}(0, \mathbf{P})\left|E_{\lambda, n}\right\rangle\left\langle E_{\lambda, n}\right| \mathcal{O}_{\lambda}^{\dagger}(0,-\mathbf{P})|0\rangle \\
& (2) C\left(x_{0}-y_{0}, \mathbf{P}\right)=\frac{1}{Z_{\text {Eucl. }}} \int \mathcal{D}[U, q, \bar{q}] \mathcal{O}_{\lambda^{\prime}}^{\prime}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\lambda}^{\dagger}\left(y_{0},-\mathbf{P}\right) e^{-S_{\text {Eucl. }} .}
\end{aligned}
$$

(3) Sum over all Feynman diagrams: e.g., $\pi \pi \rightarrow \pi \pi$

... gives meaning to the observables!

One particle in a finite volume

\notin One particle in a periodic finite volume:

$$
C\left(x_{0}-y_{0}, \mathbf{0}\right) \longrightarrow Z_{0} e^{-m_{L}\left(x_{0}-y_{0}\right)} \approx Z_{0} e^{-m_{\infty}\left(x_{0}-y_{0}\right)}
$$

One particle in a finite volume

8 One particle in a periodic finite volume:

$$
C(P)=-1 \mathrm{PI}-+1 \mathrm{PI}-1 \mathrm{PI}-+\cdots
$$

Below th
intermed

Take home message: "get a big enough box and you
ume loops are can plume ones) might as well forget about the fact that you performed calculations in a finite Euclidean spacetime"

$$
C\left(x_{0}-y_{0}, \mathbf{0}\right) \longrightarrow Z_{0} e^{-m_{L}\left(x_{0}-y_{0}\right)} \approx Z_{0} e^{-m_{\infty}\left(x_{0}-y_{0}\right)}
$$

Bound states in a finite volume

Get sufficiently large boxes and extrapolate to infinite volume

Formal studies supporting claim:
\& Lüscher (1986)
Φ Beane, Bedaque, Parreno, and Savage (2004), (2005)
\& Bour, Koenig, Lee, Hammer, and Meissner (2011)
\neq Kreuzer \& Hammer $(2008,20009,2010)$
\& Davoudi and Savage (2011) (2014)
\& Kreuzer \& Grießhammer (2013)
\nsubseteq RB, Davoudi, Luu and Savage (2013) ...

Some lattice QCD calculations involving bound
Yamazaki, Ishikawa, Kuramashi, and Ukawa (2012)
\% Beane et al. [NPLQCD] (2012)
Hadron Spectrum Coll. (2014)
\& HAL QCD

No-go theorem revisited

Calculation involving two particles or more, require additional formalism to relate lattice QCD quantities to infinite volume Minkowski observables:
\& Maiani \& Testa (1990) $:$
\vdots
\vdots
\& RB, Hansen \& Walker-Loud (2014)
see A. Walker-Loud's talk, today @ 17:10
In a nutshell:
Minkowski: $\quad\langle 0| \mathcal{O}_{\pi \pi}(t) \mathcal{O}_{\pi \pi}^{\dagger}(-t)|0\rangle \longrightarrow \quad$ asymptotic, on-shell states
Euclidean: $\quad\langle 0| \mathcal{O}_{\pi \pi}(t) \mathcal{O}_{\pi \pi}^{\dagger}(-t)|0\rangle \longrightarrow \quad$ on-shell \& off-shell states

A roadmap towards physics

1 Calculate finite volume spectrum

(2) Plug into formalism
3) Out goes elastic \& inelastic QCD scattering amplitudes

à la mode de Lüscher (1986)

5 Plug spectrum, scattering parameters and finite volume form factor into formalism

à la mode de Lellouch \& Lüscher (2000)

A roadmap towards physics

1) Calculate finite volume spectrum

(2) Plug into formalism

3 Out goes elastic \& inelastic QCD scattering amplitudes
à la mode de Lüscher (1986)

let's review what is known regarding the spectrum first

A long list of extensions of the Lüscher formalism

\% Lüscher (1986), (1991)

```
("Lüscher Formalism")
```

\& Maiani and Testa (1990)
\% Rummukainen and Gottlieb (1995)
\& Beane, Bedaque, Parreno, and Savage (2004), (2005)
\& Bedaque (2004)
\& Li and Liu (2004)
\& Detmold and Savage (2004)
\& Feng, Li, and Liu (2004)
\& Christ, Kim, and Yamazaki (2005)
\& Kim, Sachrajda, and. Sharpe (2005)
\& Bernard, Lage, Meissner, and Rusetsky (2008)
\& Ishizuka (2009)
\& Bour, Koenig, Lee, Hammer, and Meissner (2011)
\& Davoudi and Savage (2011) (2014)

```
\& Leskovec and Prelovsek (2012)
```

\& Gockeler, Horsley, Lage, Meissner, Rakow (2012)
\& Polejaeva and Rusetsky (2012)
\& Hansen and Sharpe (2012), (2013)
\& RB and Davoudi (2012), (2013)
\& Li and Liu (2013)
\& Guo, Dudek, Edwards, and Szczepaniak (2013)
\& RB, Davoudi, and Luu (2013)
\& RB, Davoudi, Luu and Savage (2013)
\& Bernard, Lage,Meissner, and Rusetsky (2011)
\& RB (2014)
\& Li, Li, Liu (2014)
\& ...

Reinventing the quantum-mechanical wheel

 (in $1+1$ dimensions)

Reinventing the quantum-mechanical wheel
(in $1+1$ dimensions)

Reinventing the quantum-mechanical wheel

Periodicity:

$$
\phi(L)=\phi(0)
$$

Quantization condition:

$$
L p_{n}=2 \pi n
$$

Reinventing the quantum-mechanical wheel

Two particles:

Reinventing the quantum-mechanical wheel

Two particles:

Reinventing the quantum-mechanical wheel

Two particles:

Reinventing the quantum-mechanical wheel

Two particles:

infinite volume
scattering phase shift

Reinventing the quantum-mechanical wheel

Two particles:

infinite volume scattering phase shift
$\psi(x) \sim e^{i p^{*} x+i 2 \delta\left(p^{*}\right)}$
Asymptotic wavefunction

Periodicity:

$$
\psi(L)=\psi(0)
$$

Quantization condition:

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

$3+1 \mathrm{D}$ result

$\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

Finite volume spectrum

\& Model independent \& non-perturbative
Infinite volume scattering

Universal: nuclear physics, atomic physics, etc
\% Arbitrary quantum numbers: relativity, spin, masses, momenta, angular momentum, inelasticities, etc
\% General volumes with any boundary conditions: periodic, anti-periodic, or any linear combination on any rectangular prism

$3+1 \mathrm{D}$ result

$\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

Finite volume spectrum

Compactly summarizes \& generalizes all that has been written on the two-body sector in the literature

A long list of extensions of the Lüscher formalism
M. Lüscher (1086), (1991) ("Lüscher Formalism")

Q L. Maiani and M. Testa (1990)

- K. Rummukainen and S. A. Gottlieb (1995)

Q S. Beane, P. Bedaque, A. Parreno, and M. Savage
(2004), (2005)

Q P. Bedaque (2004)

- X. Li and C. Liu (2004)

Q W. Detmold and M.J. Savage (2004)
Q X. Feng, X. Li, and C. Liu (2004)
Q N. H. Christ, C. Kim, and T. Yamazaki (2005)
@ C. Kim, C. Sachrajda, and S. R. Sharpe (2005)

- V. Bernard, M. Lage, U.-G. Meissner, and A.

Rusetsky (2008)
Q N. Ishizuka (2009)

- S. Bour, S. Koenig, D. Lee, H.W. Hammer,
- Z. Davoudi and M.J. Savage (2011) (2014)
- L. Leskovec and S. Prelovsek (2012)
- M. Gockeler, R. Horsley, M. Lage, U.-G. Meissner, P. Rakow (2012)
Q K. Polejaeva and A. Rusetsky (2012)
Q M. T. Hansen and S. R. Sharpe (2012), (2013)
- RB and Z. Davoudi (2012), (2013)
- N. Li and C. Liu (2013)
- P. Guo, J. Dudek, R. Edwards, and A. P. Szczepaniak
(2013)

Q RB, Z. Davoudi, and T. C. Luu (2013)

- $\underset{\substack{\text { RB, Z. Davoudi, T. C. Luu and M. J. Savage (2013) } \\(2013)}}{\text { (2) }}$

Q V. Bernard, M. Lage, U.-G. Meissner, and A.

- Rusetsky (2011)

Q N. Li, S. Y. Li, C. Liu (2014)

- RB (2014)

Q Ning Li, Song-Yuan Li, Chuan Liu (2014)
Q ...

$3+1 \mathrm{D}$ result

$\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

determinant over (J, mJ) and open channels

$3+1 \mathrm{D}$ result

det
 M^{-1}
 $\left.+\delta \mathcal{G}^{V}\right]=0$

Physical scattering amplitude

(Can couple any number of channels)
e.g. positive parity, isosinglet, two-nucleon channel (deuteron...)

$$
\left(\begin{array}{cccc}
\mathcal{M}_{1}^{S} & \mathcal{M}_{1}^{S D} & 0 & \\
\mathcal{M}_{1}^{D S} & \mathcal{M}_{1}^{D} & 0 & \\
0 & 0 & \mathcal{M}_{3}^{D} & \\
& & & \ddots
\end{array}\right)
$$

When fitting the spectrum one may choose to parametrize the scattering amplitude using:
\& low-energy effective field theory
\& effective range expansion
\& analyticity
\& potential method
\&...

Warning: modeling may creep in here

$3+1 \mathrm{D}$ result

$\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

Finite volume spectrum
Infir lte volume scattering

e.g. S-wave at rest

$$
k^{*} \cot \delta_{S}=\frac{1}{\pi L} \sum_{\mathbf{n}} \frac{1}{\mathbf{n}^{2}-\left(k^{*} L / 2 \pi\right)^{2}}
$$

$3+1 \mathrm{D}$ result

$\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

Finite volume spectrum
See talk by Z. Davoudi on "Two-baryon systems with twisted boundary", Wed. @ 12:50

One example: $К \pi-K \eta$

Determine finite volume spectra, e.g., $K \pi-K \eta$ spectrum using $\mathrm{m}_{\pi} \sim 390 \mathrm{MeV}$
by David Wilson, Dudek, Edwards \& Thomas (2014) [Hadron Spectrum Coll]

unboosted
$\mathbf{d}=\mathbf{P L} / 2 \pi=[000]$

Over 100 energy levels determined using 3 different volumes and 5 different types of boosts, $\mathbf{d}=\{[000],[001],[011],[111],[002]\}$ and allowed cubic rotations.

One example: $К \pi-K \eta$

Determine finite volume spectra, e.g., $K \pi-K \eta$ spectrum using $\mathrm{m}_{\pi} \sim 390 \mathrm{MeV}$
by David Wilson, Dudek, Edwards \& Thomas (2014) [Hadron Spectrum Coll]

(2) $\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

One example: $К \pi-K \eta$

Determine finite volume spectra, e.g., $K \pi-K \eta$ spectrum using $\mathrm{m}_{\pi \sim 390 \mathrm{MeV}}$
by David Wilson, Dudek, Edwards \& Thomas (2014) [Hadron Spectrum Coll]
(2) $\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

One example: $К \pi-K \eta$

Determine finite volume spectra, e.g., $K \pi-K \eta$ spectrum using $\mathrm{m}_{\pi} \sim 390 \mathrm{MeV}$
by David Wilson, Dudek, Edwards \& Thomas (2014) [Hadron Spectrum Coll]
(2) $\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

One example: $\mathrm{K} \pi-\mathrm{K} \eta$

Determine finite volume spectra, e.g., $\mathrm{K} \pi-\mathrm{K} \eta$ spectrum using $\mathrm{m}_{\pi \sim 390 \mathrm{MeV}}$
by David Wilson, Dudek, Edwards \& Thomas
(2014) [Hadron Spectrum Coll]
(2) $\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

One example: $К \pi-K \eta$

Determine finite volume spectra, e.g., $K \pi-K \eta$ spectrum using $\mathrm{m}_{\pi} \sim 390 \mathrm{MeV}$
by David Wilson, Dudek, Edwards \& Thomas
(2014) [Hadron Spectrum Coll]
(2) $\operatorname{det}\left[\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right]=0$

Very first determination of twoparticle coupled-channel scattering parameters from lattice QCD!

See David Wilson's talk [yesterday!] for further details and arXiv: 1406.4158 for a copy of the manuscript.

For more examples on this formalism being implemented see T. Yamazaki's and S. Prelovsek's plenary talks

inelasticity

Spectrum 2-body system in a box

Spectrum 2-body system in a box

Spectrum 3-body system in a box

Spectrum 3-body system in a box

Hansen \& Sharpe (2014)

Polejaeva \& Rusetsky (2012)

Formally, no poles on the two-particle K-matrix

Repulsive

Spectrum 3-body system in a box

Hansen \& Sharpe (2014)

Polejaeva \& Rusetsky (2012)
See S. Sharpe's talk, today @ 14:15: Relativistic threeparticle quantization condition: an update

Formally, no poles on the two-particle K-matrix

Repulsive

Spectrum 3-body system in a box

N -Body system in a box

```
Weakly interacting N-bosons (two species):
% Smigielski & Wasem (2008)
qTan (2008)
& Beane, Detmold, & Savage (2007)
Weakly interacting N-bosons + 1 baryon:
& Detmold & Nicholson (2013)
Deeply bound N-particles:
& Yamazaki, Ishikawa, Kuramashi, and Ukawa (2012)
& Beane et al. [NPLQCD] (2012)
```

See J. Green's talk, Wed @ 12:30: H-dibaryon searches

Alternative techniques

Finite-volume Hamiltonian method:
\& Technique for parametrizing the interaction between particles in a finite volume
\& $\mathrm{N} \pi$ in Δ channel [Hall, Hsu, Leinweber, Thomas \& Young (2013)]
\& $\pi \pi$-KK coupled channel [Wu, Lee, Thomas \& Young (2014)]
See D. Leinweber's talk today @ 16:50

Non-relativistic potential method for N -body:
\#Arbitrary number of non-relativistic particles

\notin Relativistic limit holds for two particles
\& HAL OCD (2012)

Alternative techniques

Finite-volume Hamiltonian method:
\& Technique for parametrizing the interaction between particles in a finite volume
\& $\mathrm{N} \pi$ in Δ channel [Hall, Hsu, Leinweber, Thomas \& Young (2013)]
\& $\pi \pi$-KK coupled channel [Wu, Lee, Thomas \& Young (2014)]
See D. Leinweber's talk today @ 16:50

Not distinct from Lüscher! Just another way to parametrize the scattering amplitude!

Non-relativistic potential method for N -body:
\#Arbitrary number of non-relativistic particles

\notin Relativistic limit holds for two particles
\& HAL OCD (2012)

Alternative techniques

Finite-volume Hamiltonian method:
\& Technique for parametrizing the interaction between particles in a finite volume
\& $\mathrm{N} \pi$ in Δ channel [Hall, Hsu, Leinweber, Thomas \& Young (2013)]
\& $\pi \pi$-KK coupled channel [Wu, Lee, Thomas \& Young (2014)]
See D. Leinweber's talk today @ 16:50

Not distinct from Lüscher! Just another way to parametrize the scattering amplitude!

Non-relativistic potential method for N-body:

\otimes Arbitrary number of non-relativistic particles
\& Relativistic limit holds for two particles
\& HAL OCD (2012)

Adam Smith "father of capitalism"

A roadmap towards physics

Calculate finite volume spectrum

What about form factors of unstable particles, two particle
(5) Plug spectrum, scattering parameters and finite volume form factor into formalism

Transition form factors

$$
\left\langle\left\langle E_{\Lambda_{f}, n_{f}} \mathbf{P}_{f} ; L\right| \tilde{\mathcal{J}}_{\Lambda \mu}\left(0, \mathbf{P}_{f}-\mathbf{P}_{i}\right) \mid E_{\Lambda_{i}, 0} \mathbf{P}_{i} ; L\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\Lambda_{i}, 0}}} \sqrt{\left[\mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}^{\dagger} \mathcal{R}_{\Lambda_{f}, n_{f}} \mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}\right]}\right.
$$

finite volume one-to-two matrix element!

Note: off-shellness cancels!

There are a number of matrix elements involving hadronic two-body initial and/or final states for calculation with lattice QCD would provide a significant advancement for nuclear and particle physics. the calculation of proton-proton fusion through the weak interactions, $p p \rightarrow d e^{+} \nu_{e}$, will allow for a dire prediction of this fundamental process which powers the sun. The MuSun Collaboration will measure a re muon canture on deuterium [1]. At low energies, these two processes are described bv the same two-nu

Transition form factors

RB, Hansen \& Walker-Loud (2014)

Transition form factors

$$
\begin{gathered}
\left.\left.\left|\left\langle E_{\Lambda_{f}, n_{f}} \mathbf{P}_{f} ; L\right| \tilde{\mathcal{J}}_{\Lambda \mu}\left(0, \mathbf{P}_{f}-\mathbf{P}_{i}\right)\right| E_{\Lambda_{i}, 0} \mathbf{P}_{i} ; L\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\Lambda_{i}, 0}}} \sqrt{\left[\mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}^{\dagger}\right.} \mathcal{R}_{\Lambda_{f}, n_{f}} \mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}\right.\right] \\
\text { infinite volume transition amplitude, related to infinite volume matrix elements }
\end{gathered}
$$

$$
\left\langle a, P_{f}, J m_{J} ; \infty\right| \tilde{\mathcal{J}}_{\Lambda \mu}(0, \mathbf{Q} ; \infty)\left|P_{i} ; \infty\right\rangle=\left[\mathcal{A}_{\Lambda \mu ; J m_{J}}\right]_{a}(2 \pi)^{3} \delta^{3}\left(\mathbf{P}_{f}-\mathbf{P}_{i}-\mathbf{Q}\right)
$$

RB, Hansen \& Walker-Loud (2014)

a vector in the space of open channels

Transition form factors

$$
\left.\left|\left\langle E_{\Lambda_{f}, n_{f}} \mathbf{P}_{f} ; L\right| \tilde{\mathcal{J}}_{\Lambda \mu}\left(0, \mathbf{P}_{f}-\mathbf{P}_{i}\right)\right| E_{\Lambda_{i}, 0} \mathbf{P}_{i} ; L\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\Lambda_{i}, 0}}} \sqrt{\left[\mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}^{\dagger} \mathcal{R}_{\Lambda_{f}, n_{f}} \mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}\right]}\right.
$$

Reproduces well known K-to- $\pi \pi$ result and shows result holds even if the final and initial state are not degenerate.

Transition form factors

Relevant references:
\& RB, Hansen \& Walker-Loud (2014)
\& Agadjanov,Bernard, Meißner \& Rusetsky (2014)
\& Hansen \& Sharpe (2012)
\& RB \& Davoudi (2012)
$\%$ Meyer (2012)
\& Bernard, Hoja, Meißner \& Rusetsky (2012)
\& Christ, Kim \& Yamazaki (2005)
\& Kim, Sachrajda \& Sharpe (2005)
\& Detmold \& Savage (2004)
\& Lin, Martinelli, Sachrajda, and Testa (2001)
\& Lellouch \& Lüscher (2000)
bosonic systems:
\& arbitrary energies, momenta
\& arbitrary angular momentum
\& partial-wave mixing
\& arbitrary open channels
\& periodic, twisted BCs
\& generic rectangular prism
see A. Walker-Loud's talk, today @ 17:10
baryonic systems:
\& final state at rest
\& no partial-wave mixing
\& single partial wave
\& one open channel
\& periodic, twisted BCs

Transition form factors

Best known example: $K \rightarrow \pi \pi$

see talks by N. Ishizuka,
C. Kelly, D. Zhang [yesterday!]

Status of
 formalism
 (somewhat bias estimate)

\& Spectroscopy/
scattering:

Electromagnetic form factors:
\% Fundamental
symmetries:

Status of formalism

(somewhat bias estimate)
\& Spectroscopy/ scattering:

Electromagnetic form factors:
\% Fundamental
symmetries:

Status of formalism

(somewhat bias estimate)
\& Spectroscopy/ scattering:

E Electromagnetic form factors:

\% Fundamental symmetries:

Status of formalism

(somewhat bias estimate)

\& Spectroscopy/ scattering:
\& Electromagnetic form factors:
formally indistinguishable
\& Fundamental symmetries:

Status of formalism

(somewhat bias estimate)
\& Spectroscopy / scattering:
\& Electromagnetic form factors:

: Under control

Status of formalism

(somewhat bias estimate)
\& Spectroscopy / scattering:
\& Electromagnetic form factors:

\& Fundamental symmetries:

Few-body talks to see

speakers
Z. Davoudi
T. Doi
M. Endres
J. Green
W. Kamleh
D. Leinweber
A. Rusetsky
B. Owen
C. Shultz
S. Sharpe
P. Vachaspati
A. Walker-Loud
M. Wingate
date/time topic
Wed. @ 12:50
Thurs. @ 15:55
Fri @ 18:10
Wed @ 12:30
Wed. @ 09:00
Today @ 16:50
Fri @ 17:50
Thurs. @ 16:15
Thurs. @ 3:55pm
Today @ 14:15
Today
Today @ 17:10
Today
many thanks to all who sent material to share!
two-baryon formalism three-N force potential noise reduction

H-dibaryon
five-quark operators
the nature of the $\Lambda(1405)$
Δ to $\mathrm{N} \gamma$ transition
excited nucleons form factors
radiative physics
three-particle formalism
Poster: B decays
multi-channel 1 to 2 formalism
Poster: B decays

