Long-distance contributions to flavour-changing processes

Chris Sachrajda

School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK (RBC-UKQCD Collaboration)

> Lattice 2014 22 - 28 June 2014

School of Physics and Astronomy

Introduction

- Our satisfaction at the discovery of the Higgs Boson is (temporarily?) tempered by the absence of a discovery of *new physics* at the LHC.
- Precision Flavour physics is a key tool, complementary to the LHC, in exploring the limits of the Standard Model of Particle Physics and in searches for new physics.
 - If the LHC experiments discover new elementary particles BSM, then precision flavour physics will be necessary to understand the underlying framework.
 - The discovery potential of precision flavour physics should also not be underestimated. (In principle, the reach is about two-orders of magnitude deeper than the LHC!)
 - Precision flavour physics requires control of hadronic effects for which lattice QCD simulations are essential.
- It is surprising that no unambiguous inconsistencies have arisen up to now.

Э

- At this conference we have seen the continued, hugely impressive, improvement in precision for a wide range of quantities.
 - As a community we still have work to do to convince some of our HEP colleagues of the validity of the results:

 Question at EPS2013:
 Can we trust the lattice?

 CTS@EPS 1993 - $\hat{B}_K = 0.8(2)$,
 CTS@EPS 2013 - $\hat{B}_K = 0.766(10)$.

 FLAG2, arXiv:1310:8555

- Standard quantities include the spectrum and matrix elements of the form $\langle 0 | O | h \rangle$ and $\langle h_2 | O | h_1 \rangle$, where the *O* are local composite operators and *h*, *h*₁, *h*₂ are hadrons.
 - We are seeing the range of O and h, h_1, h_2 extended.
 - We are seeing the extension to two-hadron states (including $K \rightarrow \pi \pi$).

see e.g. talks by R.Briceno & T.Yamazaki.

- In this talk I will discuss 3 topics in which the matrix elements are of non-local operators involving long-distance effects:
 - $\Delta m_K = m_{K_L} m_{K_S}.$
 - 2 Rare kaon decays.
 - 3 Electromagnetic corrections to leptonic decays.

N.Carrasco, V.Lubicz, G.Martinelli, CTS, F.Sanfillipo, N.Tantalo, C.Tarantino, M.Testa

Chris Sachrajda

- ▲ 문 ► - ▲ 문 ►

RBC-UKOCD

RBC-UKQCD

Э

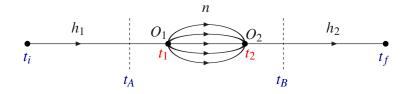
N.H.Christ, T.Izubuchi, CTS, A.Soni & J.Yu (RBC-UKQCD), arXiv:1212.5931 Z.Bai, N.H.Christ, T.Izubuchi, CTS, A.Soni & J.Yu (RBC-UKQCD), arXiv:1406.0916 Z.Bai (RBC-UKQCD), Session 2G, Monday 17.50

 $\Delta m_K \equiv m_{K_L} - m_{K_S} = 3.483(6) \times 10^{-12} \,\mathrm{MeV}.$

- Historically led to the prediction of the energy scale of the charm quark.
 Mohapatra, Rao & Marshak (1968); GIM (1970); Gaillard & Lee (1974)
- Tiny quantity ⇒ places strong constraints on BSM Physics.
- Within the standard model, Δm_K arises from $K^0 \bar{K}^0$ mixing at second order in the weak interactions:

$$\Delta M_{K} = 2 \mathscr{P} \sum_{\alpha} \frac{\langle \bar{K}^{0} | H_{W} | \alpha \rangle \langle \alpha | H_{W} | K^{0} \rangle}{m_{K} - E_{\alpha}},$$

where the sum over $|\alpha\rangle$ includes an energy-momentum integral.

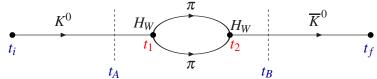


• How do you prepare the states *h*_{1,2} in the generic integrated correlation function:

$$\int d^4x \int d^4y \, \langle h_2 \, | \, T\{O_1(x) \, O_2(y)\} \, | \, h_1 \rangle \,,$$

when the time of the operators is integrated?

- The practical solution is to integrate over a large subinterval in time $t_A \le t_{x,y} \le t_B$, but to create h_1 and to annihilate h_2 well outside of this region.
- This is the natural modification of standard field theory for which the asymptotic states are prepared at t → ±∞ and then the operators are integrated over all time.
- This approach has been successfully implemented in the ΔM_K project as explained below.



• Δm_K is given by

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2\mathscr{P} \sum_{\alpha} \frac{\langle \bar{K}^0 | \mathscr{H}_W | \alpha \rangle \langle \alpha | \mathscr{H}_W | K^0 \rangle}{m_K - E_{\alpha}} = 3.483(6) \times 10^{-12} \,\mathrm{MeV}.$$

• The above correlation function gives $(T = t_B - t_A + 1)$

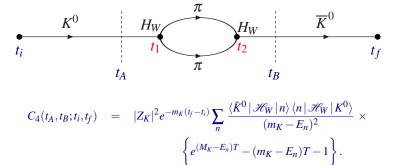
$$\begin{split} C_4(t_A,t_B;t_i,t_f) &= |Z_K|^2 e^{-m_K(t_f-t_i)} \sum_n \frac{\langle \bar{K}^0 \mid \mathscr{H}_W \mid n \rangle \langle n \mid \mathscr{H}_W \mid K^0 \rangle}{(m_K-E_n)^2} \times \\ &\left\{ e^{(M_K-E_n)T} - (m_K-E_n)T - 1 \right\}. \end{split}$$

• From the coefficient of *T* we can therefore obtain

$$\Delta m_{K}^{\rm FV} \equiv 2\sum_{n} \frac{\langle \bar{K}^{0} | \mathscr{H}_{W} | n \rangle \langle n | \mathscr{H}_{W} | K^{0} \rangle}{(m_{K} - E_{n})} \,.$$

Chris Sachrajda

Exponentially growing exponentials



- The presence of terms which (potentially) grow exponentially in *T* is a generic feature of calculations of matrix elements of bilocal operators.
- There can be π^0 or vacuum intermediate states.
 - The corresponding growing exponentials can be eliminated by adding $c_S(\bar{s}d) + c_P(\bar{s}\gamma^5 d)$ to H_W , with coefficients c_S and c_P chosen such that $\langle \pi^0 | H_W | K \rangle$ and $\langle 0 | H_W | K \rangle$ are both zero.
- There are two-pion contributions with $E_{\pi\pi} < m_K$. (Number of such states grows as $L \rightarrow \infty$, as in the calculation of $K \rightarrow \pi\pi$ decay amplitudes.)

• For s-wave two-pion states, Lüscher's quantization condition is $h(E,L)\pi \equiv \phi(q) + \delta(k) = n\pi$, where $q = kL/2\pi$, ϕ is a kinematical function and δ is the physical s-wave $\pi\pi$ phase shift for the appropriate isospin state.

M.Lüscher, NPB 354 (1991) 531

• The relation between the physical $K \to \pi\pi$ amplitude *A* and the finite-volume matrix element *M* L.Lellouch and M.Lüscher, hep-lat/0003023

$$|A|^2 = 8\pi V^2 \left(rac{m_K}{k}
ight)^3 \left\{k\delta'(k) + q\phi'(q)
ight\} |M|^2 \, .$$

- In addition to simple factors related to the normalization of states, the LL factor accounts for the non-exponential FV corrections.
- The evaluation of the non-exponential finite-volume corrections in the calculation of Δm_K requires an extension of the LL formalism.
 - At Lattice 2010, N.Christ, using degenerate perturbation theory, presented the result for the case when the volume is such that there is a state n_0 with $E_{n_0} = m_K$. N.H.Christ, arXiv:1012.6034
 - At Lattice 2013, I presented the result for the general (s-wave) rescattering case. N.H.Christ, G.Martinelli & CTS, arXiv:1401.1362

N.H.Christ, X.Feng, G.Martinelli & CTS, in preparation

Chris Sachrajda

• The general formula can be written:

N.H.Christ, G.Martinelli & CTS, arXiv:1401.1362 N.H.Christ, X.Feng, G.Martinelli & CTS, in preparation

$$\Delta m_K = \Delta m_K^{\rm FV} - 2\pi V \langle \bar{K}^0 | H | n_0 \rangle_V \langle n_0 | H | K^0 \rangle_V \left[\cot \pi h \frac{dh}{dE} \right]_{m_K},$$

where $h(E,L)\pi \equiv \phi(q) + \delta(k)$.

- This formula reproduces the result for the special case when the volume is such that there is a two-pion state with energy $= m_K$. N.H.Christ, arXiv:1012.6034
- Increasing the volumes keeping h = n/2 and thus avoiding the power corrections is an intriguing possibility.

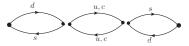
• The $\Delta S = 1$ effective Weak Hamiltonian takes the form:

$$H_W = \frac{G_F}{\sqrt{2}} \sum_{q,q'=u,c} V_{qd} V_{q's}^* (C_1 Q_1^{qq'} + C_2 Q_2^{qq'})$$

where the $\{Q_i^{qq'}\}_{i=1,2}$ are current-current operators, defined as:

$$\begin{array}{lll} Q_{1}^{qq\prime} & = & (\bar{s}_{i}\gamma^{\mu}(1-\gamma^{5})d_{i}) \; (\bar{q}_{j}\gamma^{\mu}(1-\gamma^{5})q_{j}') \\ Q_{2}^{qq\prime} & = & (\bar{s}_{i}\gamma^{\mu}(1-\gamma^{5})d_{j}) \; (\bar{q}_{j}\gamma^{\mu}(1-\gamma^{5})q_{i}') \, . \end{array}$$

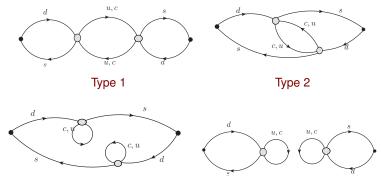
- As the two *H_W* approach each other, we have the potential of new ultraviolet divergences.
 - Taking the *u*-quark component of the operators \Rightarrow a quadratic divergence.



- GIM mechanism & V A nature of the currents \Rightarrow elimination of both quadratic and logarithmic divergences.
- Short distance contributions come from distances of $O(1/m_c)$.

Evaluating Δm_K

• There are four types of diagram to be evaluated:



Type 3

Type 4

• In our first exploratory study on 16^3 ensembles with $m_{\pi} = 420$ MeV, (1/a = 1.73 GeV) we only evaluated Type 1 and Type 2 graphs.

N.Christ, T.Izubuchi, CTS, A.Soni & J.Yu, arXiv:1212.5931

In our more recent study, we evaluated all the diagrams.

Z.Bai, N.H.Christ, T.Izubuchi, CTS, A.Soni & J.Yu, arXiv:1406.0916

Chris Sachrajda	Lattice 2014, 26th June 2014	∢ 돌 ⊁ ≪ 돌 ⊁ 돌	11

Z.Bai, N.H.Christ, T.Izubuchi, CTS, A.Soni & J.Yu, arXiv:1406.0916

• We have performed a full calculation of Δm_K , using 800 gauge configurations (separated by 10 time units) on a $24^3 \times 64 \times 16$ lattice, with DWF and the Iwasaki gauge action, $m_{\pi} = 330 \text{ MeV}$, $m_K = 575 \text{ MeV}$, $m_c^{\overline{\text{MS}}}(2 \text{ GeV}) = 949 \text{ MeV}$, 1/a = 1.729(28) GeV and $am_{\text{res}} = 0.00308(4)$.

For details of the ensembles see arXiv:0804.0473 and 1011.0892

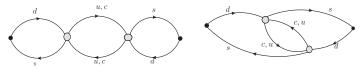
At these unphysical parameters we find

 $\Delta m_K = 3.19(41)(96) \times 10^{-12} \,\mathrm{MeV}\,,$

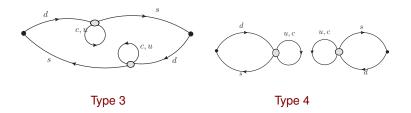
to be compared to the physical value $3.483(6) \times 10^{-12}$ MeV.

- Agreement with physical value may well be fortuitous, but it is nevertheless reassuring to obtain results of the correct order.
- Systematic error dominated by discretization effects related to the charm quark mass, which we estimate at 30%.
- Here $m_K < 2m_{\pi}$ and so we do not have exponentially growing two-pion terms.

Complete calculation of Δm_K (cont.)

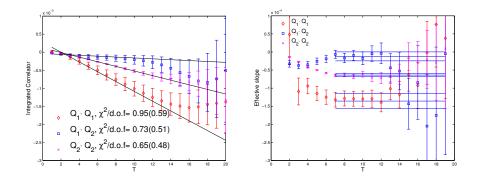


Type 1



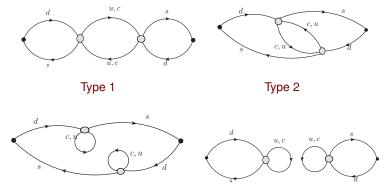
- Coulomb-gauge fixed wall sources used for the kaons.
- Point source propagators calculated for each of the 64 time slices (Types 1&2).
- Random-source propagators on each time slice (Types 3&4).

Slopes



E

Violation of the OZI rule



Туре 3

Type 4

 One possible surprise(?) from this calculation is the large size of the disconnected diagrams of type 4.

Diagrams	$Q_1 \cdot Q_1$	$Q_1 \cdot Q_2$	$Q_2 \cdot Q_2$	ΔM_K
Type 1,2	1.479(79)	1.567(36)	3.677(52)	6.723(90)
All	0.68(10)	-0.18(18)	2.69(19)	3.19(41)

• Type 3 contributions are small.

• At this conference Ziyuan Bai presented preliminary results from the RBC-UKQCD collaboration study on the $32^3 \times 64$ DWF&DSDR coarse lattice which had been used in the first computation of $K \to (\pi \pi)_{I=2}$ decay amplitudes.

m_{π}	m _K	m _c	a^{-1}	L	no. of configs.
171 MeV	492 MeV	592/750 MeV	1.37 GeV	4.6 fm	212

■ $m_K > 2m_\pi \Rightarrow$ allows us to study the effect of the two-pion intermediate state.

• We use the freedom to perform chiral rotations, to transform

$$H_W \rightarrow H'_W = H_W + c_S(\bar{s}d) + c_P(\bar{s}\gamma^5 d)$$

with c_S and c_P chosen so that

 $\langle 0 | H'_W | K \rangle = 0$ and $\langle \eta | H'_W | K \rangle = 0$.

Even though $m_{\eta} > m_K$, we find that the large errors associated with the $\eta \Rightarrow$ it is difficult to control the exponential suppression. We therefore find that it is more effective to eliminate the η (rather than the pion).

Chris Sachrajda

Z.Bai - This conference

m_c	Δm_K	
750 MeV	$(4.6 \pm 1.3) \times 10^{-12} \mathrm{MeV}$	
592 MeV	$(3.8 \pm 1.7) imes 10^{-12} \mathrm{MeV}$	

- Only statistical errors are shown.
- The contributions from $\pi\pi$ intermediate states is small $(\Delta m_K(\pi\pi)_{I=0} = -0.133(99) \times 10^{-12} \text{ MeV}, \Delta m_K(\pi\pi)_{I=2} = -6.54(25) \times 10^{-16} \text{ MeV}).$
- For I = 0 the FV effects are O(20%) of the 4% contribution (i.e. \leq 1%).
- Very promising indeed and in near-future calculations we will perform computations at physical kinematics and also on ensembles with unquenched charm quarks.
- For prospects for the calculation of ε_K see:

N.H.Christ, T.Izubuchi, CTS, A.Soni and J.Yu, arXiv:1402.2577, Z.Bai, N.H.Christ, T.Izubuchi, CTS, A.Soni and J.Yu, arXiv:1406.0916.

See parallel talk by Xu Feng

Some comments from F.Mescia, C.Smith, S.Trine hep-ph/0606081:

- Rare kaon decays which are dominated by short-distance FCNC processes, $K \rightarrow \pi v \bar{v}$ in particular, provide a potentially valuable window on new physics at high-energy scales.
- The decays $K_L \rightarrow \pi^0 e^+ e^-$ and $K_L \rightarrow \pi^0 \mu^+ \mu^-$ are also considered promising because the long-distance effects are reasonably under control using ChPT.
 - They are sensitive to different combinations of short-distance FCNC effects and hence in principle provide additional discrimination to the neutrino modes.
 - A challenge for the lattice community is therefore either to calculate the long-distance effects reliably or at least to determine the Low Energy Constants of ChPT.
- We, N.Christ, X.Feng, A.Portelli, CTS and RBC-UKQCD, are attempting to meet this challenge.

Э

Southampton School of Physics and Astronomy

$K_L \to \pi^0 \ell^+ \ell^-$

There are three main contributions to the amplitude:

Short distance contributions:

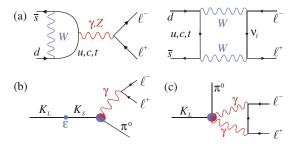
F.Mescia, C,Smith, S.Trine hep-ph/0606081

$$H_{\rm eff} = -\frac{G_F \alpha}{\sqrt{2}} V_{ts}^* V_{td} \{ y_{7V}(\bar{s}\gamma_{\mu}d) \left(\bar{\ell}\gamma^{\mu}\ell\right) + y_{7A}(\bar{s}\gamma_{\mu}d) \left(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell\right) \} + \text{h.c.}$$

- Direct CP-violating contribution.
- In BSM theories other effective interactions are possible.
- 2 Long-distance indirect CP-violating contribution

$$A_{ICPV}(K_L \to \pi^0 \ell^+ \ell^-) = \varepsilon A(K_1 \to \pi^0 \ell^+ \ell^-).$$

3 The two-photon CP-conserving contribution $K_L \to \pi^0(\gamma^*\gamma^* \to \ell^+\ell^-)$.



 $K_L \rightarrow \pi^0 \ell^+ \ell^-$ cont.

 The current phenomenological status for the SM predictions is nicely summarised by: V.Cirigliano et al., arXiv1107.6001

$$Br(K_L \to \pi^0 e^+ e^-)_{CPV} = 10^{-12} \times \left\{ 15.7 |a_S|^2 \pm 6.2 |a_S| \left(\frac{\mathrm{Im}\,\lambda_t}{10^{-4}}\right) + 2.4 \left(\frac{\mathrm{Im}\,\lambda_t}{10^{-4}}\right)^2 \right\}$$

$$Br(K_L \to \pi^0 u^+ u^-)_{CPV} = 10^{-12} \times \left\{ 3.7 |a_S|^2 \pm 1.6 |a_S| \left(\frac{\mathrm{Im}\,\lambda_t}{10^{-4}}\right) \pm 1.0 \left(\frac{\mathrm{Im}\,\lambda_t}{10^{-4}}\right)^2 \right\}$$

$$Br(K_L \to \pi^0 \mu^+ \mu^-)_{CPV} = 10^{-12} \times \left\{ 3.7 |a_S|^2 \pm 1.6 |a_S| \left(\frac{Im \lambda_t}{10^{-4}} \right) + 1.0 \left(\frac{Im \lambda_t}{10^{-4}} \right) \right\}$$

- $\lambda_t = V_{td}V_{ts}^*$ and $\text{Im }\lambda_t \simeq 1.35 \times 10^{-4}$.
- $|a_S|$, the amplitude for $K_S \to \pi^0 \ell^+ \ell^-$ at $q^2 = 0$ as defined below, is expected to be O(1) but the sign of a_S is unknown. $|a_S| = 1.06^{+0.26}_{-0.21}$.
- For $\ell = e$ the two-photon contribution is negligible.
- Taking the positive sign (?) the prediction is

$$\begin{array}{lll} {\rm Br}(K_L \to \pi^0 e^+ e^-)_{\rm CPV} &=& (3.1 \pm 0.9) \times 10^{-11} \\ {\rm Br}(K_L \to \pi^0 \mu^+ \mu^-)_{\rm CPV} &=& (1.4 \pm 0.5) \times 10^{-11} \\ {\rm Br}(K_L \to \pi^0 \mu^+ \mu^-)_{\rm CPC} &=& (5.2 \pm 1.6) \times 10^{-12} \,. \end{array}$$

The current experimental limits (KTeV) are:

 $\operatorname{Br}(K_L \to \pi^0 e^+ e^-) < 2.8 \times 10^{-10} \text{ and } \operatorname{Br}(K_L \to \pi^0 \mu^+ \mu^-) < 3.8 \times 10^{-10}.$

CPC Decays:
$$K_S \rightarrow \pi^0 \ell^+ \ell^-$$
 and $K^+ \rightarrow \pi^+ \ell^+ \ell^-$

G.Isidori, G.Martinelli and P.Turchetti, hep-lat/0506026

• We now turn to the CPC decays $K_S \to \pi^0 \ell^+ \ell^-$ and $K^+ \to \pi^+ \ell^+ \ell^-$ and consider

$$T_i^{\mu} = \int d^4x e^{-iq \cdot x} \langle \pi(p) | \mathrm{T} \{ J_{\mathrm{em}}^{\mu}(x) Q_i(0) \} | K(k) \rangle,$$

where Q_i is an operator from the effective Hamiltonian.

EM gauge invariance implies that

$$T_i^{\mu} = \frac{\omega_i(q^2)}{(4\pi)^2} \left\{ q^2 (p+k)^{\mu} - (m_K^2 - m_{\pi}^2) q^{\mu} \right\}.$$

Within ChPT the Low energy constants a₊ and a_s are defined by

$$a = \frac{1}{\sqrt{2}} V_{us}^* V_{ud} \left\{ C_1 \omega_1(0) + C_2 \omega_2(0) + \frac{2N}{\sin^2 \theta_W} f_+(0) C_{7V} \right\}$$

where $Q_{1,2}$ are the two current-current GIM subtracted operators and the C_i are the Wilson coefficients. (C_{7V} is proportional to y_{7V} above).

G.D'Ambrosio, G.Ecker, G.Isidori and J.Portoles, hep-ph/9808289

• Phenomenological values: $a_+ = -0.578 \pm 0.016$ and $|a_S| = 1.06^{+0.26}_{-0.21}$.

Can we do better in lattice simulations?

Chris Sachrajda

The generic non-local matrix elements which we wish to evaluate is

$$\begin{split} X &\equiv \int_{-\infty}^{\infty} dt_x d^3 x \, \langle \pi(p) \, | \, \mathbf{T} [J(0) \, H(x)] \, | K \rangle \\ &= i \sum_n \frac{\langle \pi(p) \, | \, J(0) \, | n \rangle \, \langle n \, | H(0) \, | K \rangle}{m_K - E_n + i \varepsilon} - i \sum_{n_s} \frac{\langle \pi(p) \, | \, H(0) \, | n_s \rangle \, \langle n_s \, | \, J(0) \, | \, K \rangle}{E_{n_s} - E_\pi + i \varepsilon} \,, \end{split}$$

• $\{|n\rangle\}$ and $\{|n_s\rangle\}$ represent complete sets of non-strange and strange sets.

In Euclidean space we envisage calculating correlation functions of the form

$$C \equiv \int_{-T_a}^{T_b} dt_x \left\langle \phi_{\pi}(\vec{p}, t_{\pi}) \operatorname{T} \left[J(0) H(t_x) \right] \phi_K^{\dagger}(t_K) \right\rangle \equiv \sqrt{Z_K} \, \frac{e^{-E_K |t_K|}}{2m_K} \, X_E \sqrt{Z_\pi} \, \frac{e^{-E_\pi t_\pi}}{2E_\pi} \,,$$

where

$$\begin{split} X_{E_{-}} &= -\sum_{n} \frac{\langle \pi(p) \, | \, J(0) \, | n \rangle \, \langle n \, | \, H(0) \, | \, K \rangle}{E_{K} - E_{n}} \left(1 - e^{(E_{K} - E_{n})T_{a}} \right) \quad \text{and} \\ X_{E_{+}} &= \sum_{n_{s}} \frac{\langle \pi(p) \, | \, H(0) \, | n_{s} \rangle \, \langle n_{s} \, | \, J(0) \, | \, K \rangle}{E_{n_{s}} - E_{\pi}} \left(1 - e^{-(E_{n_{s}} - E_{\pi})T_{b}} \right). \end{split}$$

Rescattering effects in rare kaon decays

Southampton School of Physics and Astronomy

- We can remove the single pion intermediate state.
- Which intermediate states contribute?
 - Are there any states below M_K ?
 - We can control q^2 and stay below the two-pion threshold.

- Do the symmetries protect us completely from two-pion intermediate states at low q^2 ?
- Are the contributions from three-pion intermediate states negligible?
- Answers to the above questions will affect what the finite-volume corrections are?
- The ChPT-based phemomenology community neglect such possibilities as they are higher order in the chiral expansion.

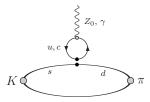
All to be investigated further!

• It looks as though the FV corrections are much simpler than for ΔM_K and may be exponentially small?

Chris Sachrajda

$$T_{i}^{\mu} = \int d^{4}x \, e^{-iq \cdot x} \langle \pi(p) \, | \, \mathrm{T}\{J^{\mu}(x) \, Q_{i}(0) \,\} \, | \, K(k) \rangle \,,$$

- Each of the two local *Q_i* operators can be normalized in the standard way and for *J* we imagine taking the conserved vector current.
- We must treat additional divergences as $x \rightarrow 0$.



• Quadratic divergence is absent by gauge invariance \Rightarrow Logarithmic divergence.

Checked explicitly for Wilson and Clover at one-loop order.

G.Isidori, G.Martinelli and P.Turchetti, hep-lat/0506026

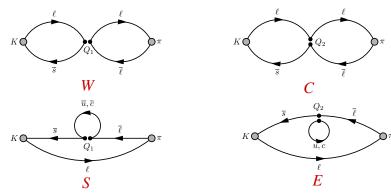
- Absence of power divergences does not require GIM.
- Logarithmic divergence cancelled by GIM.
- For DWF the same applies for the axial current.

To be investigated further!

Chris Sachrajda

Lattice 2014, 26th June 2014

• For example for K^+ decays we need to evaluate the diagrams obtained by inserting the current at all possible locations in the three point function (and adding the disconnected diagrams):

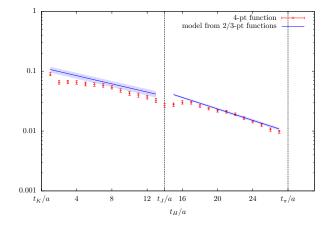


- *W*=Wing, *C*=Connected, *S*=Saucer, *E*=Eye.
- For *K*_S decays there is an additional topology with a gluonic intermediate state.
- For the first exploratory study, we have only considered the *W* and *C* diagrams.

- The numerical study is performed on the $24^3 \times 64$ DWF+lwasaki RBC-UKQCD ensembles with $am_l = 0.01$ ($m_\pi \simeq 420$ MeV), $am_s = 0.04$, $a^{-1} \simeq 1.73$ fm.
- 127 configurations were used with $\vec{k} = (1,0,0) \frac{2\pi}{L}$ and $\vec{p} = 0$.
- The calculation is performed using the conserved vector current (5-dimensional), J^0 .

Э

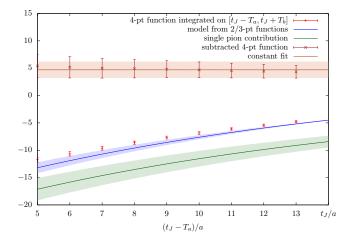
Unintegrated 4-point Correlation Function



• $t_K = 0$, $t_\pi = 28$ and $t_J = 14$. *x*-coordinate is t_H .

 Blue band - Result from 2&3 point-functions assuming ground state contributions between t_J and t_H. (No fit here.)

Integrated 4-point Correlation Function



- In this plot $T_b = 9$, so that the integral is from the *x*-coordinate to 23.
- It appears that the subtraction of the exponentially growing term can be performed and a constant result obtained.
- These are just the beginnings much work still to be done.

Chris Sachrajda

Lattice 2014, 26th June 2014

N.Carrasco, V.Lubicz, G.Martinelli, CTS, F.Sanfillipo, N.Tantalo, C.Tarantino, M.Testa (in preparation)

- For a review of electromagnetic mass-splittings see the talk by A.Portelli at this conference.
- The evaluation of (some) weak matrix elements are now being quoted with O(1%) precision e.g.
 FLAG Collaboration, arXiv:1310.8555

- We therefore need to start considering electromagnetic (and other isospin breaking) effects if we are to use these results to extract CKM matrix elements at a similar precision.
- For illustration, I consider f_{π} but the discussion is general. I do not use ChPT. For a ChPT based discussion of f_{π} , see J.Gasser & G.R.S.Zarnauskas, arXiv:1008.3479
- At $O(\alpha^0)$

$$\Gamma(\pi^+ \to \ell^+ \mathbf{v}_{\ell}) = \frac{G_F^2 |V_{ud}|^2 f_{\pi}^2}{8\pi} m_{\pi} m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_{\pi}^2} \right)^2.$$

Chris Sachrajda

Э

• At $O(\alpha)$ infrared divergences are present and we have to consider

$$\begin{split} \Gamma(\pi^+ \to \ell^+ \mathbf{v}_{\ell}(\gamma)) &= & \Gamma(\pi^+ \to \ell^+ \mathbf{v}_{\ell}) + \Gamma(\pi^+ \to \ell^+ \mathbf{v}_{\ell}\gamma) \\ &\equiv & \Gamma_0 + \Gamma_1 \,, \end{split}$$

where the suffix denotes the number of photons in the final state.

- Each of the two terms on the rhs is infrared divergent, the divergences cancel in the sum.
- The cancelation of infrared divergences between contributions with virtual and real photons is an old and well understood issue.

```
F.Bloch and A.Nordsieck, PR 52 (1937) 54
```

- The question for our community is how best to combine this understanding with lattice calculations of non-perturbative hadronic effects.
- This is a generic problem if em corrections are to be included in the evaluation of a decay process.

Lattice computations of $\Gamma(\pi^+ \to \ell^+ v_{\ell}(\gamma))$ at $O(\alpha)$

- At this stage we do not propose to compute Γ₁ nonperturbatively. Rather we consider only photons which are sufficiently soft for the point-like (pt) approximation to be valid.
 - A cut-off Δ of O(10 MeV) appears to be appropriate both experimentally and theoretically.
 - (In the future, as techniques and resources improve, it may be better to compute Γ₁ nonperturbatively over a larger range of photon energies.)
- We now write

$$\Gamma_0 + \Gamma_1(\Delta) = \lim_{V \to \infty} (\Gamma_0 - \Gamma_0^{\mathrm{pt}}) + \lim_{V \to \infty} (\Gamma_0^{\mathrm{pt}} + \Gamma_1(\Delta)) \,.$$

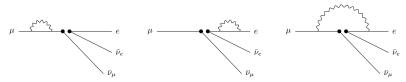
- The second term on the rhs can be calculated in perturbation theory. It is infrared convergent, but does contain a term proportional to log Δ.
- The first term is also free of infrared divergences.
- Γ_0 is calculated nonperturbatively and Γ_0^{pt} in perturbation theory. The subtraction in the first term is performed for each momentum and then the sum over momenta is performed (see below).

The procedure

1 The result for the width is expressed in terms of G_F , the Fermi constant $(G_F = 1.16632(2) \times 10^{-5} \,\text{GeV}^{-2})$. This is obtained from the muon lifetime:

$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} \left[1 - \frac{8m_e^2}{m_{\mu}^2} \right] \left[1 + \frac{\alpha}{2\pi} \left(\frac{25}{4} - \pi^2 \right) \right]$$

S.M.Berman, PR 112 (1958) 267; T.Kinoshita and A.Sirlin, PR 113 (1959) 1652 This expression can be viewed as the definition of G_F . Many EW corrections are absorbed into the definition of G_F ; the explicit $O(\alpha)$ corrections come from the following diagrams in the effective theory:



together with the diagrams with a real photon.

The diagrams are evaluated in the *W*-regularisation in which the photon propagator is modified by: A.Sirlin, PRD 22 (1980) 971

$$\frac{1}{k^2} \to \frac{M_W^2}{M_W^2 - k^2} \frac{1}{k^2} \,. \qquad \qquad \left(\frac{1}{k^2} = \frac{1}{k^2 - M_W^2} + \frac{M_W^2}{M_W^2 - k^2} \frac{1}{k^2}\right)$$

Chris Sachrajda

Lattice 2014, 26th June 2014

32

The procedure (cont.)

2 Most (but not all) of the EW corrections which are absorbed in G_F are common to other processes (including pion decay) \Rightarrow factor in the amplitude of $(1+3\alpha/4\pi(1+2\bar{Q})\log M_Z/M_W)$, where $\bar{Q} = \frac{1}{2}(Q_u + Q_d) = 1/6$.

A.Sirlin, NP B196 (1982) 83; E.Braaten & C.S.Li, PRD 42 (1990) 3888 We therefore need to calculate the pion-decay diagrams in the effective theory

(with $H_{\text{eff}} \propto (\bar{d}_L \gamma^{\mu} u_L)(\bar{v}_{\ell,L} \gamma_{\mu} \ell_L)$) in the *W*-regularization. These can be related to the lattice theory by perturbation theory, e.g. for Wilson fermions:

$$O_{LL}^{W-\text{reg}} = \left(1 + \frac{\alpha}{4\pi} \left(2\log a^2 M_W^2 - 15.539\right) + O(\alpha\alpha_s)\right) O_{LL}^{\text{bare}}.$$

4 We now return to the master formula:

$$\Gamma_0 + \Gamma_1(\Delta) = \lim_{V \to \infty} (\Gamma_0 - \Gamma_0^{\text{pt}}) + \lim_{V \to \infty} (\Gamma_0^{\text{pt}} + \Gamma_1(\Delta)) \,.$$

- The term which is added and subtracted is not unique, but we require that both terms are free of ir divergences and independent of the ir regulator.
- Kinoshita performed the calculation for a pointlike pion, (i) integrating over all phase space and (ii) imposing a cut-off on the charged-lepton energy.

T.Kinoshita, PRL 2 (1959) 477

э

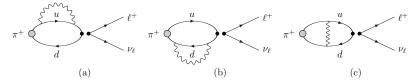
We have reproduced these results and extended them to a cut-off on the photon energy.

Chris Sachrajda

Lattice 2014, 26th June 2014

The procedure (Cont)

5 Consider now the evaluation of the first term in the master formula.



• The correlation function for this set of diagrams is of the form:

$$C_1(t) = \frac{1}{2} \int d^3 \vec{x} \, d^4 x_1 \, d^4 x_2 \, \left\langle 0 \right| T \left\{ J_W^{\nu}(0) j^{\mu}(x_1) j_{\mu}(x_2) \phi^{\dagger}(\vec{x}, t) \right\} \left| 0 \right\rangle \, \Delta(x_1, x_2) \, ,$$

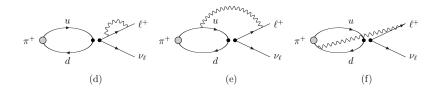
where $j_{\mu}(x) = \sum_{f} Q_{f} \bar{f}(x) \gamma_{\mu} f(x)$, J_{W} is the weak current, ϕ is an interpolating operator for the pion and Δ is the photon propagator.

• Combining C₁ with the lowest order correlator:

$$C_0(t) + C_1(t) \simeq \frac{e^{-m_{\pi}t}}{2m_{\pi}} Z^{\phi} \langle 0 | J_W^{\nu}(0) | \pi^+ \rangle,$$

where now $O(\alpha)$ terms are included.

• $e^{-m_{\pi}t} \simeq e^{-m_{\pi}^{0}t} (1 - \delta m_{\pi}t)$ and Z^{ϕ} is obtained from the two-point function.



- Diagrams (e) and (f) are not simply generalisations of the evaluation of *f*π. The leptonic part is treated using perturbative propagators.
 (There are also disconnected diagrams to be evaluated.)
- We have to be able to isolate the finite-volume ground state (pion).
- The Minkowski ↔ Euclidean continuation can be performed (the time integrations are convergent).
- Finite volume effects, expected to be $O(1/(L\Lambda_{QCD})^n)$, being investigated.
- The next step will be to start implementing this procedure.
- As we learn how to do such calculations it will be useful to consider simpler quantities such as Γ(π → μν_μ(γ))/Γ(π → ev_e(γ)).

Thanks!

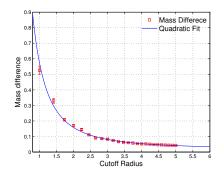
 We warmly thank Norman, Bob and Peter, the LOC and all their colleagues at Columbia and Brookhaven who have helped to make Lattice 2014 such a stimulating, enjoyable and beautifully organised conference.

Photos courtesy of H.Wittig.

- In this talk I have described the current status of three projects involving long-distance effects:
 - $\Delta m_K = m_{K_L} m_{K_S}.$
 - 2 Rare kaon decays.
 - 3 Electromagnetic corrections to leptonic decays.
- The early results and indications are very promising indeed, but much more work needs to be done.

Supplementary slide - Ultraviolet divergences (cont.)

• As an example consider the behaviour of the integrated $Q_1 - Q_1$ correlation function without GIM subtraction but with an artificial cut-off, $R = \sqrt{\{(t_2 - t_1)^2 + (\vec{x}_2 - \vec{x}_1)^2\}}$ on the coordinates of the two Q_1 insertions.



N.Christ, T.Izubuchi, CTS, A.Soni & J.Yu, arXiv:1212.5931

- The plot exhibits the quadratic divergence as the two operators come together.
- The quadratic divergence is cancelled by the GIM mechanism.

Chris Sachrajda

Lattice 2014, 26th June 2014