A Perturbative Study of the Chirally Rotated Schrödinger Functional in QCD

Pol Vilaseca Mainar Stefan Sint

•Introduction: Schrödinger Functional schemes and automatic O(a) improvement.

•The Chirally Rotated Schrödinger Functional (χ SF)

- Definition
- Renormalization & Improvement
- Correlation Functions
- A perturvatibe study
 - Determination of coefficients
 - Checks of automatic O(a) improvement.
 - Applications
 - Concluding Remarks

Introduction:

•Finite Volume (FV) schemes based on the Schrödinger Functional widely used in non perturbative renormalization.

C''

L

n

 $x_0 = T$

space

•Hypercylindrical Euclidean manifold with temporal boundaries. [Lüscher et al. '92]

$$\mathcal{Z}[C,C'] = \int \mathcal{D}[A,\psi,\overline{\psi}] e^{-S[A,\psi,\overline{\psi}]}$$
 time

•Boundary conditions:

-Gauge fields
$$C_k = \frac{\iota}{L} \operatorname{diag}(\phi_{1k}, ..., \phi_{Nk})$$

-Fermion fields
$$P_+\psi \mid_{x_0=0} = P_-\psi \mid_{x_0=T} = 0$$

 Successfully applied in severel renormalization problems: (coupling in QCD, running quark masses, BSM, composite operators, ...)

 $x_0 = 0$

Introduction:

•In any SF formulation, there are extra sources of cutoff effects generated at the boundaries. (Extra dim 4 operators localized at the boundaries).

•These can be removed through Symanzik improvement.

•For Wilson Fermions and gauge action, O(a) effects are due todim 5 operators in the bulk and dim 4 at the boundaries.

•O(a) improvement is achieved by adding

-Bulk: (dim 5) $\overline{\psi}i\sigma_{\mu\nu}F_{\mu\nu}\psi$ \longrightarrow $c_{\rm SW}$

-Boundaries: (dim 4)

-Gauge:
$$\operatorname{tr} \{F_{kl}F_{kl}\} \longrightarrow c_{t}$$

-Fermion: $\overline{\psi}P_{\pm}D_{0}\psi \longrightarrow \widetilde{c}_{t}$

If \mathcal{R}_5 is a symmetry of the massless continuum theory,

$$\mathcal{O}_{\text{even}} \longrightarrow O(1), \ O(a^2), \ \dots$$

 $\mathcal{O}_{\text{odd}} \longrightarrow O(a), \ O(a^3), \ \dots$

$$\mathcal{R}_5:\psi
ightarrow i\gamma_5\psi$$
 $\overline{\psi}
ightarrow\overline{\psi}i\gamma_5$

If \mathcal{R}_5 is a symmetry of the massless continuum theory,

$$\mathcal{O}_{\text{even}}$$
 $O(1), O(a^2), \dots$
 \mathcal{O}_{odd} $O(a), O(a^3), \dots$

$$\mathcal{L}_5: \psi \to i\gamma_5 \psi$$

 $\overline{\psi} \to \overline{\psi} i\gamma_5$

K

But...
$$P_{\pm}\gamma_5 = \gamma_5 P_{\mp}$$

If \mathcal{R}_5 is a symmetry of the massless continuum theory,

$$\mathcal{O}_{\text{even}}$$
 $O(1), O(a^2), \dots$
 \mathcal{O}_{odd} $O(a), O(a^3), \dots$

$$\psi_5:\psi\to i\gamma_5\psi$$

 $\overline\psi\to\overline\psi i\gamma_5$

 \mathcal{R}

But... $P_{\pm}\gamma_5 = \gamma_5 P_{\mp}$ Could we $\left[\widetilde{\gamma}_5, \widetilde{P}_{\pm}\right] = 0$

If \mathcal{R}_5 is a symmetry of the massless continuum theory,

But...
$$P_{\pm}\gamma_5 = \gamma_5 P_{\mp}$$

Could we $\left[\widetilde{\gamma}_5, \widetilde{P}_{\pm}\right] = 0$

Yes !!!!

$$\widetilde{\gamma}_5 = \gamma_5 \tau_1 \quad \widetilde{Q}_{\pm} = \frac{1}{2} \left(1 \pm i \gamma_0 \gamma_5 \tau_3 \right)$$

 $\overline{\psi}
ightarrow \overline{\psi} i \gamma_5$

Chirally Rotated SF

χSF [Sint '05-'10]

$$\widetilde{Q}_{+}\psi\mid_{x_{0}=0}=\widetilde{Q}_{-}\psi\mid_{x_{0}=T}=0$$

$$\overline{\psi}\widetilde{Q}_+\mid_{x_0=0} = \overline{\psi}\widetilde{Q}_-\mid_{x_0=T} = 0$$

Implements in the SF the mechanism of automatic O(a) improvement

$$\widetilde{Q}_{\pm} = \frac{1}{2} \left(1 \pm i \gamma_0 \gamma_5 \tau_3 \right)$$

Chirally Rotated SF

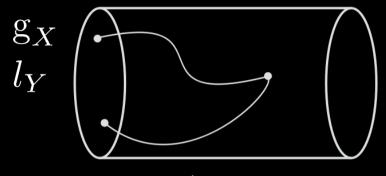
$$\begin{split} & \chi \text{SF} \text{ [Sint '05-'10]} & \text{Implements in the SF the mechanism of automation} \\ & \widetilde{Q}_{+}\psi \mid_{x_{0}=0} = \widetilde{Q}_{-}\psi \mid_{x_{0}=T} = 0 & \text{O(a) improvement} \\ & \overline{\psi}\widetilde{Q}_{+} \mid_{x_{0}=0} = \overline{\psi}\widetilde{Q}_{-} \mid_{x_{0}=T} = 0 & \widetilde{Q}_{\pm} = \frac{1}{2}\left(1 \pm i\gamma_{0}\gamma_{5}\tau_{3}\right) \\ & \text{SF and } \chi \text{SF related through a chiral rotation} \\ & \text{(Identical in the continuum and chiral limits).} \\ & \psi \longrightarrow R(\alpha)\psi & R(\alpha) & R(\alpha) = e^{i\gamma_{5}\tau^{3}\alpha/2} \ \alpha = \pi/2 \end{split}$$

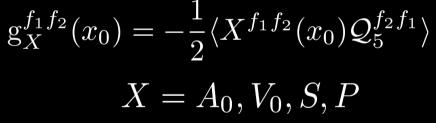
Automatic O(a) improvement is expected after renormalization and O(a) imp (of boundaries):

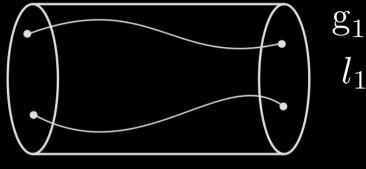
$$m_{
m c}$$
 $z_{
m f}$ $d_{
m s}$ $c_{
m t}$

χ SF correlation functions

•Boundary to bulk and boundary to boundary





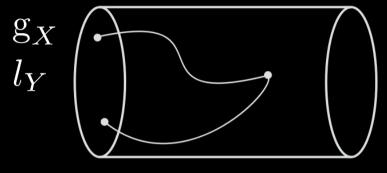


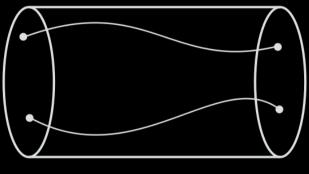
$$g_1^{f_1 f_2} = -\frac{1}{2} \langle Q_5^{f_1 f_2} Q_5^{' f_2 f_1} \rangle$$

 l_1

χSF correlation functions

Boundary to bulk and boundary to boundary





 $g_1^{f_1f_2} = -\frac{1}{2} \langle Q_5^{f_1f_2} Q_5^{'f_2f_1} \rangle$

$$g_X^{f_1 f_2}(x_0) = -\frac{1}{2} \langle X^{f_1 f_2}(x_0) Q_5^{f_2 f_1} \rangle$$
$$X = A_0, V_0, S, P$$

 These are related to standard SF correlationfunctions through the chiral twist

 $\langle O[R(\pi/2)\psi,\overline{\psi}R(\pi/2)]\mathcal{Q}_5^{f_1f_2}\rangle_{\chi SF} = \langle O[\psi,\overline{\psi}]\mathcal{O}_5^{f_1f_2}\rangle_{SF}$

 $R(\alpha) = e^{i\gamma_5\tau^3\alpha/2}$

 g_1

 l_1

χSF correlation functions

Dictionary between SF and cSF correlation functions

$$f_A = g_A^{uu} = g_A^{dd} = -ig_V^{ud} = ig_V^{du}$$
$$f_P = ig_S^{uu} = -ig_S^{dd} = g_P^{ud} = g_P^{du}$$
even

odd
$$\int_{V} f_{V} = g_{V}^{uu} = g_{V}^{dd} = -ig_{A}^{ud} = ig_{A}^{du}$$
$$f_{S} = ig_{P}^{uu} = -ig_{P}^{dd} = g_{S}^{ud} = g_{S}^{du}$$

These are related to standard SF correlationfunctions through the chiral twist

 $\langle O[R(\pi/2)\psi,\overline{\psi}R(\pi/2)]\mathcal{Q}_5^{f_1f_2}\rangle_{\chi SF} = \langle O[\psi,\overline{\psi}]\mathcal{O}_5^{f_1f_2}\rangle_{SF}$

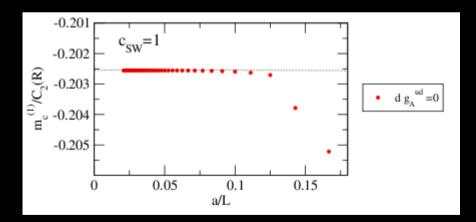
 $R(\alpha) = e^{i\gamma_5\tau^3\alpha/2}$

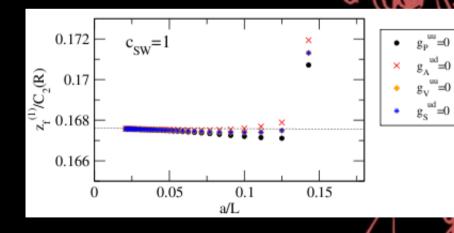
Renormalization and improvement conditions evaluated order by order in perturbation theory.

- $m_{\rm c}$: $m_{\rm PCAC} = 0$
- z_{f} : require a $\overline{\mathcal{P}}_{5}$ odd observable to vanish. $g_{A}^{ud} = 0; \quad g_{V}^{uu} = 0; \quad g_{P}^{uu} = 0; \quad g_{S}^{ud} = 0$
- $d_{
 m s}$: require absence of O(a) effects in \mathcal{P}_5 even observable
- $c_{\rm t}$: require absence of O(a) terms in the 1-loop coupling

For $m_{
m c}$ and $z_{
m f}$:

- $m_c^{(1)}: \begin{cases} -0.2025565(1) \times C_2(\mathcal{R}), & c_{\rm SW} = 1\\ -0.325721(7) \times C_2(\mathcal{R}), & c_{\rm SW} = 0, \end{cases}$
- $z_f^{(1)} : \begin{cases} 0.167572(2) \times C_2(\mathcal{R}), & c_{\rm SW} = 1\\ 0.33023(6) \times C_2(\mathcal{R}), & c_{\rm SW} = 0, \end{cases}$





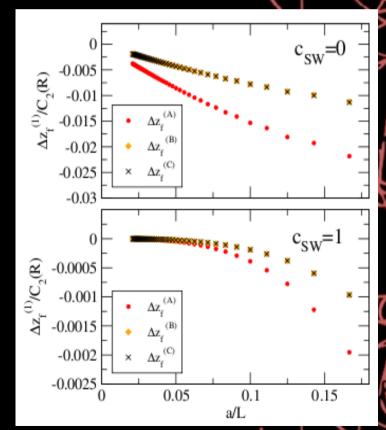
For $m_{
m c}$ and $z_{
m f}$:

$$m_c^{(1)}: \begin{cases} -0.2025565(1) \times C_2(\mathcal{R}), & c_{\rm SW} = 1\\ -0.325721(7) \times C_2(\mathcal{R}), & c_{\rm SW} = 0, \end{cases}$$

 $z_f^{(1)}: \begin{cases} 0.\overline{167572(2)} \times C_2(\mathcal{R}), & c_{\rm SW} = 1\\ 0.33023(6) \times C_2(\mathcal{R}), & c_{\rm SW} = 0, \end{cases}$

Different renormalization conditions \longrightarrow O(a) differences in $z_{\rm f}$

$$\left(\begin{array}{c} \Delta z_{f}^{(A)} = \left. z_{f}^{(1)} \right|_{\mathbf{g}_{A}^{ud}} - \left. z_{f}^{(1)} \right|_{\mathbf{g}_{P}^{uu'}} \\ \Delta z_{f}^{(B)} = \left. z_{f}^{(1)} \right|_{\mathbf{g}_{V}^{uu'}} - \left. z_{f}^{(1)} \right|_{\mathbf{g}_{P}^{uu'}} \\ \Delta z_{f}^{(C)} = \left. z_{f}^{(1)} \right|_{\mathbf{g}_{S}^{ud}} - \left. z_{f}^{(1)} \right|_{\mathbf{g}_{P}^{uu'}} \end{array} \right)$$



For $d_{\rm s}$ we demand O(a) effects to be absent from the ratio (several θ)

For $d_{\rm s}$ we demand O(a) effects to be absent from the ratio (several θ)

 $\frac{\left[g_P^{ud}(x_0, \theta, a/L)\right]_R}{\left[g_P^{ud}(x_0, 0, a/L)\right]_R}\Big|_{x_0=T/2} \rightarrow d_s^{(1)} = -0.0009(3) \times C_2(\mathcal{R})$

For C_t we demand O(a) effects to be absent from the SF coupling (standard definition through a background field).

$$\frac{1}{\overline{g}^2} = \frac{\partial \Gamma / \partial \eta|_{\eta=0}}{\partial \Gamma_0 / \partial \eta|_{\eta=0}}$$

$$c_t^{(1,1)} : \begin{cases} 0.006888(3), \ c_{\rm SW} = 1\\ -0.00661445(5), \ c_{\rm SW} = 0, \end{cases}$$

i) Correct realization of the boundary conditions

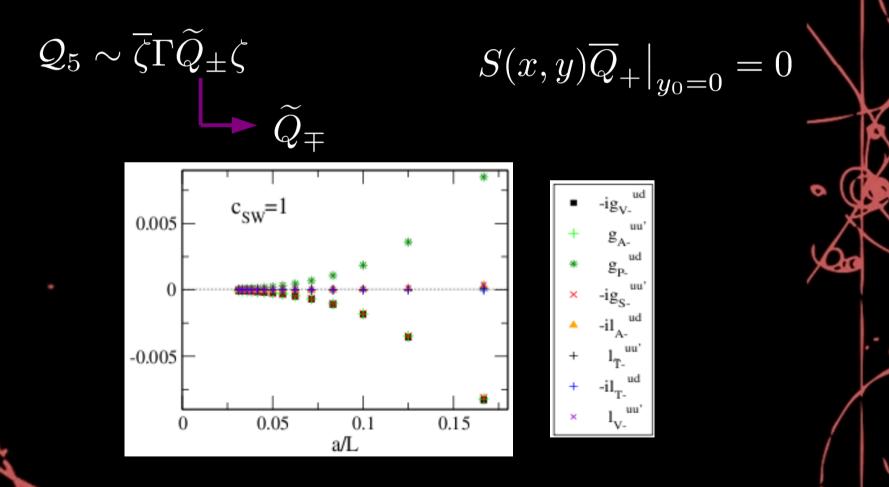
Boundary bilinears defined with oposite projectors

$$Q_5 \sim \overline{\zeta} \Gamma \widetilde{Q}_{\pm} \zeta \qquad \qquad S(x,y) \overline{Q}_{+} \big|_{y_0=0} = 0$$

$$\widetilde{Q}_{\mp}$$

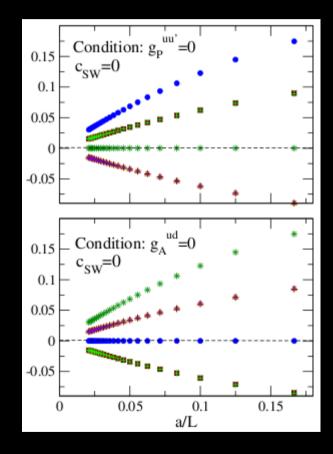
i) Correct realization of the boundary conditions

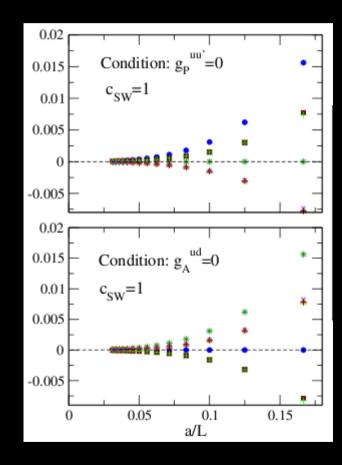
Boundary bilinears defined with oposite projectors



ii) Odd observables must vanish in the continuum limit

ii) Odd observables must vanish in the continuum limit





iii) Universality between SF and χ SF: Ratios between renormalized correlation functions converge.

$$\frac{g_{\rm A}^{uu'}(T/2)/\sqrt{g_1}}{f_{\rm A}(T/2)/\sqrt{f_1}} \longrightarrow 1 \qquad \frac{g_{\rm P}^{ud}(T/2)/\sqrt{g_1}}{f_{\rm P}(T/2)/\sqrt{g_1}}$$

iii) Universality between SF and χ SF: Ratios between renormalized correlation functions converge.

$$\frac{g_{\rm A}^{uu'}(T/2)/\sqrt{g_1}}{f_{\rm A}(T/2)/\sqrt{f_1}} \longrightarrow 1$$

$$\frac{g_{\mathrm{P}}^{ud}(T/2)/\sqrt{g_1}}{f_{\mathrm{P}}(T/2)/\sqrt{f_1}} \longrightarrow 1$$

Tree-level;

Choice B

Choice C

0.05

0.1

a/L

0.15

1.3

1.2

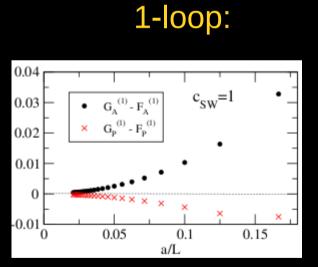
1.1

0.9

0

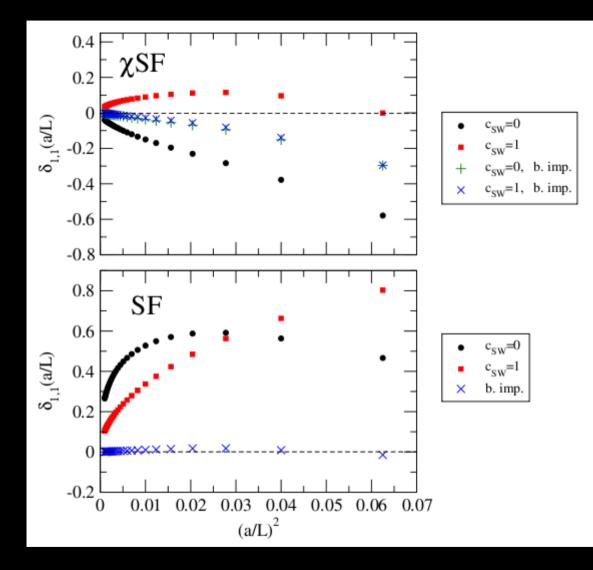
⁽⁰⁾/F_A⁽⁰⁾

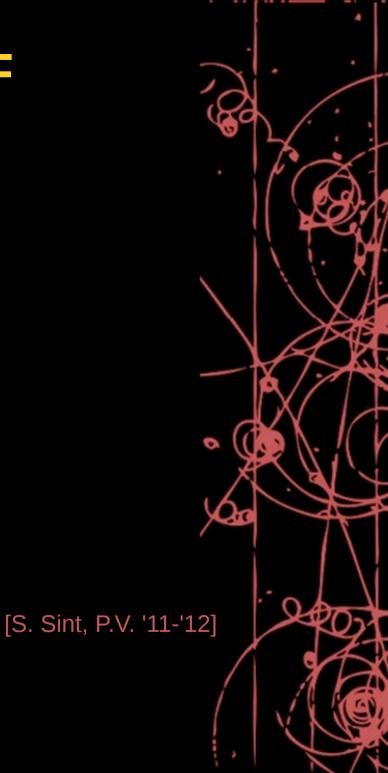
Ğ



Setup ready!!!!!

Cutoff effects in the SSF



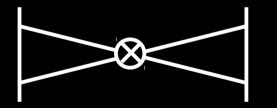


Applications:

•Computation of finite renormalization factors (see Mattia Dalla Brida's talk) [B. Leder, S. Sint, '10]

$$Z_{A} = i \frac{g_{\widetilde{V}}^{ud}(T/2)}{g_{A}^{uu}(T/2)} \qquad \qquad Z_{V} = \frac{g_{\widetilde{V}}^{ud}(T/2)}{g_{V}^{ud}(T/2)}$$

•Renormalization of 4-fermion operators: Simpler observables & no operator improvement



•Twist-2 operators. [J. Gonzalez Lopez et al, '12]

Conclusions

•The χ SF implements the mechanism of automatic O(a) improvement in the SF setup.

•We have determined to 1-loop in PT the necessary coefficients for the renormalization and O(a) improvement of the setup: $m_{\rm c}^{(1)}, z_{\rm f}^{(1)}, d_{\rm s}^{(1)}, c_{\rm t}^{(1)}$

•We have confirmed that after fixing these parameters, automatic O(a) improvement is at hold (at 1-loop).

•The running coupling has been computed to 1-loop in pt.

•See Mattia's talk for a Nf=2 dynamical calculation.

..... thank you very much !!!