Scalar correlators near the 3 -flavor thermal critical point

Xiao-Yong Jin
RIKEN AICS
In collaboration with Y. Kuramashi, Y. Nakamura, S. Takeda, and A. Ukawa Lattice 2014, Columbia University, NYC

Introduction

- 3-flavor finite temperature simulations using the clover fermions and the Iwasaki gauge with $N_{t}=8$
- Evolution uses BQCD; measurement uses my modified code (developed in Helsinki, optimized for K by Jarno)
- The scalar singlet is the only massless mode at the chiral critical point (Pisarski \& Wilczek 1984, Gavin et al 1994)
- Naive staggered simulations $\left(N_{t}=4\right)$ provided evidence (JLQCD 1999, Liao 2002); no improvement since

Contents

- Measurement techniques
- Hierarchical truncation with stochastic probing
- Truncated solver method + Probing + Random sources
- $40 \times$ speedup in measuring $\operatorname{Tr}\left[D^{-1}\right]$ on one configuration
- Physics results
- First order transition at two different parameter sets
- Two stable states on both sides of the transition
- Screening masses with the singlet scalar on the transition line

Singlet propagators

It is hard

$$
-N_{f}^{2}\langle\circlearrowleft\rangle^{2}
$$

Singlet propagators

It is hard

$$
-N_{i}\left\langle\bigcirc \bigcirc^{2}\right.
$$

Nearest neighbor action

Minimum links between same colored site, $d_{\text {min }}=3$

$$
\left.\begin{array}{l}
\left(B_{\varepsilon} V_{6}\right)^{\mathrm{T}}=\left[\begin{array}{ccc:c:cc:c:c:c:c:c}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \\
1
\end{array}\right]
$$

Ignore the off-diagonals if they fall off quickly

Probing
Tang \& Saad 2012

Probing as a form of space-time dilution

- Number of diluted vectors for $32^{3} \times 8$ using the greedy multi-coloring algorithm (Saad 2003)

$d_{\text {min }}$	2	3	4	5	6	7	8
No.	2	23	16	120	210	411	256

- Not only the upfront cost is impractical
- Uniform sources generate bias from off-diagonal terms
- It is hard to pick $d_{\text {min }}$ beforehand (one solution offered by Stathopoulos et al 2013)

"Use no force,

but the random source.

Never let the odds stop you."

-A Lattice Field Theorist

$d_{\text {min }}$	2	3	4	5	6	7	8
No.	2	23	16	120	210	411	256
$\sigma_{\text {impo }} / \sigma$ $(25 C G i t e r)$ $@$ eame cost	0.82		0.58				0.28

Require spin-color separation to get an improvement: $\times 12$

"Use no force,

but the random source.

Never let the odds stop you."

-A Lattice Field Theorist

"BUT I CAN'T PAY THE COST!"

Truncated solver method (TSM)

Collins et al 2007

Multi-level truncation

Hierarchical truncation with stochastic probing

- Spin-color separated, space-time diluted random sources with minimum distance between non-zero entries, $d_{\text {min }}$, as large as possible
- Apply different $d_{\text {min }}$ hierarchically on CG truncations, respecting cost constraints

Values for this work CG iteration

$$
\begin{array}{ll}
d_{\text {min }}=8 & \Longleftrightarrow \\
d_{\text {min }}=4 \\
d_{\text {min }}=2
\end{array}
$$

Truncation with \& without dilution

- Compare 'undiluted' random sources and ‘spin-color separated, space-time diluted' random sources
- Measured on one configuration up to the $8^{\text {th }} \mathrm{CG}$ iteration
- Exponential decay (no proof yet)

Computed improvement on one configuration

- Computed from variance/covariance distribution of CG iterations
- $R_{\text {imp, }}$ reduction in variance with equal cost
- Constraint of cost ~500 full CG inv.

Scenario	TSM	2L-TSM	3 S-TSM	2L-HTwSP
Cost	500.3	493.2	486.2	501.9
$R_{\text {imp }}$	$0.203(4)$	$0.119(4)$	$0.102(3)$	$0.0231(6)$
N_{h}	99	21	5	1
Iter $_{\mathrm{h}}$	2049	2049	2049	2049
C_{h}	1	1	1	24
N_{l}	2990	1312	442	4
Iter $_{1}$	275	425	475	475
C_{1}	1	1	1	192
$N_{\mathrm{l} 2}$		8200	2964	1
Iter $_{12}$		50	150	200
C_{12}		1	1	3072
N_{l}			13255	
Itr_{13}			25	
C_{13}			1	

Physics results

Preliminary

Evolution of trajectories

Effective masses

- Disconnected part dominates the singlet scalar propagator
- Singlet scalar states extracted from $x=3 \sim 8$, while other non-singlet mesons are extracted from $x=6 \sim 12$
- At $\beta=1.73$, deconfined pion is clearly lighter than confined pion
- Need to understand statistics and autocorrelations

Screening masses at the transition

- ρ, π, and σ are almost constant across the transition
- a_{1} becomes degenerate with ρ in the chiral symmetric phase
- ao drops and becomes closer to π

Extrapolating to the critical point

Summary

- We developed the method of hierarchical truncation with stochastic probing, which is easy to implement and gives 40x speedup in measuring the quark condensate.
- We observed σ screening mass twice as light as π on both sides of the first order transition close to the endpoint.
- We will increase the statistics and expand the parameter space.

