Scalar correlators near the 3-flavor thermal critical point

Xiao-Yong Jin RIKEN AICS In collaboration with Y. Kuramashi, Y. Nakamura, S. Takeda, and A. Ukawa Lattice 2014, Columbia University, NYC

Introduction

- 3-flavor finite temperature simulations using the clover fermions and the Iwasaki gauge with $N_{\rm t} = 8$
- Evolution uses BQCD; measurement uses my modified code (developed in Helsinki, optimized for K by Jarno)
- The scalar singlet is the only massless mode at the chiral critical point (Pisarski & Wilczek 1984, Gavin et al 1994)
- Naive staggered simulations ($N_t = 4$) provided evidence (JLQCD 1999, Liao 2002); no improvement since

Contents

- Measurement techniques
 - Hierarchical truncation with stochastic probing
 - Truncated solver method + Probing + Random sources
 - 40× speedup in measuring $Tr[D^{-1}]$ on one configuration
- Physics results
 - First order transition at two different parameter sets
 - Two stable states on both sides of the transition
 - Screening masses with the singlet scalar on the transition line

Singlet propagators

It is hard

Singlet propagators

It is hard

Nearest neighbor action

Minimum links between same colored site, $d_{min} = 3$

Ignore the off-diagonals if they fall off quickly

Probing Tang & Saad 2012

Probing as a form of space-time dilution

 Number of diluted vectors for 32³×8 using the greedy multi-coloring algorithm (Saad 2003)

d min	2	3	4	5	6	7	8
No.	2	23	16	120	210	411	256

- Not only the upfront cost is impractical
 - Uniform sources generate bias from off-diagonal terms
 - It is hard to pick d_{min} beforehand (one solution offered by Stathopoulos et al 2013)

"Use no force,

but the random source.

Never let the odds stop you."

-A Lattice Field Theorist

d min	2	3	4	5	6	7	8
No.	2	23	16	120	210	411	256
<i>O</i> imp/ <i>O</i> (25 CG iter) @ same cost	0.82		0.58				0.28

Require spin-color separation to get an improvement: ×12

"Use no force, but the random source. Never let the odds stop you."

-A Lattice Field Theorist

"BUT I CAN'T PAY THE COST!"

Multi-level truncation

Hierarchical truncation with stochastic probing

- Spin-color separated, space-time diluted random sources with minimum distance between non-zero entries, d_{min}, as large as possible
- Apply different d_{min} hierarchically on CG truncations, respecting cost constraints

Truncation with & without dilution

- Compare 'undiluted' random sources and 'spin-color separated, space-time diluted' random sources
- Measured on one configuration up to the 8th CG iteration
- Exponential decay (no proof yet)

Computed improvement on one configuration

- Computed from variance/covariance distribution of CG iterations
- *R*_{imp}, reduction in variance with equal cost
- Constraint of cost
 ~500 full CG inv.

Scenario	TSM	2L-TSM	3L-TSM	2L-HTwSP
Cost	500.3	493.2	486.2	501.9
R _{imp}	0.203(4)	0.119(4)	0.102(3)	0.0231(6)
$\overline{N_{\mathrm{h}}}$	99	21	5	1
Iter _h	2049	2049	2049	2049
$C_{\rm h}$	1	1	1	24
$\overline{N_1}$	2990	1312	442	4
Iter _l	275	425	475	475
$C_{\rm l}$	1	1	1	192
$\overline{N_{l2}}$		8200	2964	1
Iter ₁₂		50	150	200
C_{l2}		1	1	3072
$\overline{N_{13}}$			13255	
Iter ₁₃			25	
C_{13}^{-1}			1	

Physics results

Preliminary

Effective masses

- Disconnected part dominates the singlet scalar propagator
- Singlet scalar states extracted from $x = 3 \sim 8$, while other non-singlet mesons are extracted from $x = 6 \sim 12$
- At $\beta = 1.73$, deconfined pion is clearly lighter than confined pion
- Need to understand statistics and autocorrelations

Screening masses at the transition

- ρ , π , and σ are almost constant across the transition
- *a*₁ becomes
 degenerate with *p* in *f*^{*L*}
 the chiral symmetric
 phase
- a_0 drops and becomes closer to π

Extrapolating to the critical point

Clear trend

Summary

- We developed the method of hierarchical truncation with stochastic probing, which is easy to implement and gives 40x speedup in measuring the quark condensate.
- We observed σ screening mass twice as light as π on both sides of the first order transition close to the endpoint.
- We will increase the statistics and expand the parameter space.