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Introduction

• 3-flavor finite temperature simulations using the clover 
fermions and the Iwasaki gauge with Nt = 8 

• Evolution uses BQCD; measurement uses my modified 
code (developed in Helsinki, optimized for K by Jarno) 

• The scalar singlet is the only massless mode at the chiral 
critical point (Pisarski & Wilczek 1984, Gavin et al 1994) 

• Naive staggered simulations (Nt = 4) provided evidence 
(JLQCD 1999, Liao 2002); no improvement since
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Probing Tang & Saad 2012

COMPUTING THE DIAGONAL OF A MATRIX INVERSE
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⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 ∗ ∗ b44

--
--
--
--
--
--
--
--
--
--
--
--
--
--
-- ∗ ∗ ∗ ∗

--
--
--
--
--
--
--
--
--
--
--
--
--
--
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--
--
--
-- ∗ ∗ ∗ b16,16

∗ b22 ∗ ∗ ∗ ∗ ∗ b88 ∗ ∗ ∗ ∗ b13,13 ∗ ∗ ∗

∗ ∗ b33 ∗ b55 ∗ ∗ ∗ ∗ ∗ ∗ b12,12 ∗ b14,14 ∗ ∗

∗ ∗ ∗ ∗ ∗ b66 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ b15,15 ∗

∗ ∗ ∗ ∗ ∗ ∗ b77 ∗ b99 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ b11,11 ∗ ∗ ∗ ∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

respectively, where ∗ denotes an irrelevant entry. Consequently, for the specific s, D(B!)=
D(B!VsV T

s ) follows from Proposition 1.

As already noted, the probing technique presented here differs from the standard probing tech-
nique known in the literature. In standard probing, vertices j and k are allowed to have the same
color if the j th and kth columns of B! are structurally orthogonal, i.e. if they do not have nonzero
entries in the same row positions. This corresponds to coloring the adjacency graph associated
with B2

! instead of B!, which may require significantly more colors. When the probing matrix is
then formed by (11), it is clear that this matrix also satisfies the requirement of Proposition 1. In
fact, the corresponding probing vectors will lead to the determination of all nonzero entries of B!,
not just its diagonal entries, and this is not necessary for our problem.

6. SOLVING SEQUENCES OF LINEAR SYSTEMS

The previous section has described a procedure for finding the probing matrix, Vs , corresponding
to a given A. Based on this Vs , we can now compute Xs := B!Vs . If Xs := [x1, x2, . . . , xs] and
Vs := [v1,v2, . . . ,vs], the columns of Xs can be obtained by solving the linear systems

Ax j =v j , j =1,2, . . . ,s. (12)

By assuming that D(VsV T
s )
−1= I , Proposition 1 yields D(B!) :=D(XsV T

s ). When s≪n, solving
Equation (12) is obviously much less expensive than obtaining the inverse by solving the full
sequence of n linear systems, where each right-hand side is a column of the identity matrix.

A sequence of linear systems, such as (12), can be solved by a direct or iterative method. For
large dimensions of A, Krylov-subspace methods are among the most popular methods in use.
We apply GMRES [43] to solve Equation (12) in our experiments (see Section 8), but any other
Krylov-subspace methods could be used instead, such as QMR [44], BiCGSTAB [45], IDR(s)
[46], or their variants. The method of choice usually depends on the dimensions and the condition
of the matrix and the available memory storage, among others.

If A is not (nearly) diagonally dominant, the convergence of Krylov-subspace methods may
deteriorate. To remedy this, it is common practice to incorporate a preconditioner into the method,
e.g. by solving

P−1Ax j = P−1v j , j =1,2, . . . ,s (13)

instead of Equation (12), where P ∈Cn×n denotes a preconditioner, see, e.g. [42] for details. In
our experiments (Section 8), we will adopt a simple diagonal preconditioner, i.e. P=D(A), but
more advanced preconditioners can be used as well, see, e.g. [42] for details. The preconditioner
of choice depends on the dimensions and the condition of the matrix and the available memory
storage, but it is also influenced by the parallel implementation and the number of systems to be
solved with the same matrix, i.e. the number of probing vectors, s. Since only the right-hand sides
of the linear systems change in the sequence, spectral or recycling preconditioners [47, 48] can
be rather effective. The aim of these preconditioners is to extract some spectral components of A
when iteratively solving the system Ax =b, and reuse this information to accelerate the iterative
solutions of the subsequent linear systems with the same A.
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Figure 3. Coloring the vertices of the adjacency graph of Ap for n=42: (a) p=1
(two colors) and (b) p=2 (six colors).

Proof
By definition, Color( j ) ̸=Color(k) for each b jk ̸=0. Moreover, the j th and kth rows of Vs consist
of zeros except for the Color( j )th and Color(k)th entry, respectively. Consequently, the two rows
are orthogonal, and the proposition follows immediately. !

From Proposition 3, we conclude that Vs based on (11), where the colors are associated with
a vertex coloring of the adjacency graph, can be applied to compute D(B!). This is illustrated in
Example 4.

Example 4
Let A∈R16×16 be the matrix of a 2-D discretized Laplacian on a uniform Cartesian grid in which
the entries are ordered lexicographically. The matrix A consists of five nonzero diagonals, so that
A2 consists of 13 nonzero diagonals. Suppose that coloring of the vertices of the adjacency graph
corresponding to S(A) and S(A2) is performed by Algorithm 1. Then, the results are presented
in Figure 3. Note that we do not form the adjacency graph of A2 explicitly, as it is equivalent to
the graph whose edges represent paths of length at most 2 in the original graph. Using Equation
(11), the probing matrices can be readily obtained from the adjacency graphs, we obtain

V T
2 =

[
1 0 1 0

--
--
--
-- 1 0 1 0

--
--
--
-- 1 0 1 0

--
--
--
-- 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

]

and

V T
6 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1

--
--
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--
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--
--
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--
--
--
--
--
--
--
--
--
--
--
- 0 1 0 0

--
--
--
--
--
--
--
--
--
--
--
--
--
--
- 0 0 0 1

0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note thatD(VsV T
s )=D(VsV T

s )
−1= I holds for both s=2,6. ForS(B!)≈S(A) orS(B!)≈S(A2),

we obtain

(B!V2)T=
[
b11 ∗ b33 ∗

--
--
--
--b55 ∗ b77 ∗

--
--
--
--b99 ∗ b11,11 ∗

--
--
--
--b13,13 ∗ b15,15 ∗

∗ b22 ∗ b44 ∗ b66 ∗ b88 ∗ b10,10 ∗ b12,12 ∗ b14,14 ∗ b16,16

]
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Nearest neighbor action 


Minimum links between same colored site, dmin = 3

Ignore the off-diagonals 
if they fall off quickly
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Figure 3. Coloring the vertices of the adjacency graph of Ap for n=42: (a) p=1
(two colors) and (b) p=2 (six colors).
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a vertex coloring of the adjacency graph, can be applied to compute D(B!). This is illustrated in
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corresponding to S(A) and S(A2) is performed by Algorithm 1. Then, the results are presented
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the graph whose edges represent paths of length at most 2 in the original graph. Using Equation
(11), the probing matrices can be readily obtained from the adjacency graphs, we obtain
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Probing as a form of space-time dilution

• Number of diluted vectors for 32³×8 using the greedy 
multi-coloring algorithm (Saad 2003) 

!

• Not only the upfront cost is impractical 

- Uniform sources generate bias from off-diagonal terms 

- It is hard to pick dmin beforehand (one solution offered 
by Stathopoulos et al 2013)

dmin 2 3 4 5 6 7 8

No. 2 23 16 120 210 411 256



–A Lattice Field Theorist

“Use no force, 

but the random source. 

Never let the odds stop you.”

dmin 2 3 4 5 6 7 8
No. 2 23 16 120 210 411 256
σimp/σ 

(25 CG iter) 
@ same cost

0.82 0.58 0.28

Require spin-color separation to get an improvement: ×12



–A Lattice Field Theorist

“Use no force, 

but the random source. 

Never let the odds stop you.”

“BUT I CAN’T PAY THE COST!”



Truncated solver method 
(TSM) Collins et al 2007

More sources


Less sources

One configuration



Multi-level truncation

More sources


Less sources


Much less

One configuration



Hierarchical truncation with stochastic probing

• Spin-color separated, 
space-time diluted 
random sources with 
minimum distance 
between non-zero 
entries, dmin, as large 
as possible 

• Apply different dmin 
hierarchically on CG 
truncations, respecting 
cost constraints

dmin = 8


dmin = 4


dmin = 2

Values for this work



Truncation with & 
without dilution

• Compare ‘undiluted’ 
random sources and 
‘spin-color separated, 
space-time diluted’ 
random sources 

• Measured on one 
configuration up to the 
8th CG iteration 

• Exponential decay (no 
proof yet)

β = 1.74 
κ = 0.14054

β = 1.73 
κ = 0.14085

Evolution of ensembles

Difference of (un)diluted sources
Diluted and undiluted random sources pro-
duce different results with truncated CG.  
However, measurements on one configura-
tion (up to the 8th CG iteration) show expo-
nential decay of the difference as a function of 
the iteration number, which makes it irrele-
vant with 100 CG iterations.

Three-flavor thermal transition and the singlet scalar
Xiao-Yong Jin*, Y. Kuramashi, Y. Nakamura, S. Takeda and A. Ukawa * Presenter from RIKEN AICS

Abstract
We observe a first order finite-temperature 
phase transition with lattice QCD simula-
tions of 3 dynamical fermion flavors at Nt = 8 
using the non-perturbatively O(a) improved 
Wilson-clover fermion action and the RG 
improved Iwasaki gauge action. This poster 
presents screening masses measured with 
spatial propagators, including the flavor sin-
glet scalar. In measuring the disconnected 

part of the singlet propagator., we propose a 
hybrid approach—hierarchical truncation 
with stochastic probing—which reduces the 
sample variance of Tr[D-1] using random 
sources, and gains 40⨉ speedup. Our result 
shows the screening mass of σ is nearly half 
of π, and continues decreasing towards the 
chiral critical endpoint.

Hierarchical truncation with stochastic probing
We extend the truncated solver method 
(TSM) (Collins et al 2007) to truncating CG 
at multiple levels.  A 2-level TSM is only 50% 
better than single-level, but the parameter 
setup is more stable than single-level and of-
fers the opportunity of using different meth-

ods at each CG truncation levels, such as us-
ing the method of probing (Tang and Saad 
2012), which is a kind of space-time dilution 
using uniform volume sources to estimate 
Tr[D-1]. 
We propose the use of random sources for 
each Dirac-spin and color with the idea of 
probing, by separating the source vector to 
multiple vectors such that each separated 
vector has non-zero entries separated with 
minimum number of space-time lattice links 
dmin. Larger the dmin is, more the number of 
separated vectors and the number of inver-
sions required. Our method applies this sto-
chastic probing with the largest dmin on the 
level of the smallest CG iteration number of 
the multi-level TSM, and hierarchically in-
creasing dmin until CG convergence.

Distribution of standard deviations 
against CG iteration

2L-TSM:  Most  More                                 Less

TSM: More random sources                                 Less

2L-HTwSP: dmin = 8 dmin = 4      dmin = 2

Effective mass of π and σ
β = 1.74, κ = 0.14054

Meson screening masses
β = 1.74, κ = 0.14054

• Perfect degeneracy between ρ and a1 in the 
high temperature chiral symmetric phase. 

• Closer π and a0 from the chiral symmetry bro-
ken phase to the restored phase shows the axial 
symmetry is partially restored. 

• σ has the longest correlation length, which is 
twice of π. 

We expect a diverging correlation length of σ, 
which is the only massless mode (Gavin et al 
1994), at the critical endpoint.

323 243

β = 1.73, κ = 0.14085



Computed improvement on one configuration

• Computed from 
variance/covariance 
distribution of CG 
iterations 

• Rimp, reduction in 
variance with equal 
cost 

• Constraint of cost 
~500 full CG inv.



Physics results

Preliminary



Evolution of trajectories Stable 2 states at 2 parameter sets
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κ = 0.14054
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κ = 0.14085



Effective masses

• Disconnected part dominates 
the singlet scalar propagator 

• Singlet scalar states extracted 
from x = 3 ~ 8, while other 
non-singlet mesons are 
extracted from x = 6 ~ 12 

• At β = 1.73, deconfined pion 
is clearly lighter than confined 
pion 

• Need to understand statistics 
and autocorrelations β = 1.74 

κ = 0.14054

β = 1.73 
κ = 0.14085



Screening masses at the transition

• ρ, π, and σ are 
almost constant 
across the transition 

• a1 becomes 
degenerate with ρ in 
the chiral symmetric 
phase 

• a0 drops and 
becomes closer to π

β = 1.73 
κ = 0.14085

β = 1.74 
κ = 0.14054



Extrapolating to the 
critical point Clear trend



Summary

• We developed the method of hierarchical truncation with 
stochastic probing, which is easy to implement and gives 
40x speedup in measuring the quark condensate. 

• We observed σ screening mass twice as light as π on 
both sides of the first order transition close to the 
endpoint. 

• We will increase the statistics and expand the parameter 
space.


