Charmonium spectra and dispersion relation with improved Bayesian analysis in lattice QCD

Atsuro Ikeda

Masayuki Asakawa, Masakiyo Kitazawa

Osaka University

June 25, 2014

A.Ikeda (Osaka University)

Motivation

Relativistic Heavy Ion Collisions

- Dynamical property of QGP medium
- Charmonium: Observable of Relativistic Heavy Ion Collisions
 - J/ψ suppression [Matsui & Satz 1986]
 - Color Debye screening

Bound state melts at upper T_c

Lattice QCD: First principle calculation

- Imaginary time correlation function
- To study the dynamical property, real time information is needed.
- Analytic continuation: Imaginary time ⇒ Real time

ill-posed Problem

Motivation: Maximum Entropy Method

- Reconstruct the most probable spectral function.
 Lattice & default model
- MEM enables us to estimate the statistical error of the reconstructed image.
- However, this error is large. (transport coefficient, dispersion relation, etc...)

 $A(\omega)/\omega^2$ 2.5 2 1.62Tc 1.5 1 0.5 0 1.87 Tc 2 1.5 1 0.5 0 5 10 15 20 25 30 n ω[GeV]

Spectral function: charm, Pseudo Scalar

M.Asakawa and T.Hatsuda, PRL. 92, (2004).

Purpose

Extend MEM and reduce the error of MEM

Analyze the dispersion relation of charmonium at finite temperature

Spectral function and Lattice

Correlator and Spectral function

$$D(\tau, \vec{p}) = \int d^3x e^{i\vec{p}\cdot\vec{x}} \left\langle J_i(\tau, \vec{x}) J_i^{\dagger}(0, \vec{0}) \right\rangle$$
$$= \int_0^{\infty} K(\tau, \omega) A(\omega, \vec{k}) d\omega$$
$$K(\tau, \omega) = \frac{e^{-\tau\omega} + e^{-(\beta - \tau)\omega}}{1 - e^{-\beta\omega}}$$

 $D(\tau, \vec{p})$: Imaginary time Correlator Lattice QCD $J_i(\tau, \vec{x})$: $\bar{c}i\gamma_i c$ (i = 1, 2, 3) Vector current

ill-posed problem

- Imaginary time correlator $\rightarrow O(10)$ data points
- Spectral function → continuous

Inverse Laplace transform

Maximum Entropy Method

• Correlator from Lattice QCD \implies Likelihood function

- χ^2 with Covariance matrix
- ❷ Prior knowledge ⇒ Prior probability
 - Shannon-Jaynes entropy
 - pQCD at high energy
 - Bad default model with Big error

Reconstructed Image Aout

 $P(A, \alpha) = [\text{Likelihood function}](A) \times \alpha [\text{Prior probability}](A)/Z$ $A_{\text{out}} = \int d\alpha \int [dA] A(\omega) P(A, \alpha)$

 α controls the weight

Error estimate

Error: $I = [\omega_1, \omega_2]$ $\langle (\delta A_{\rm out})^2 \rangle_I$ $= \int d\alpha \int [dA] \int_{I \times I} d\omega d\omega'$ $\delta A(\omega) \delta A(\omega') P(A, \alpha)$ $\int d\omega d\omega'$

Reconstruct continuum function from O(10)

 $\delta A(\omega) = A(\omega) - A_{\alpha}(\omega)$

Charmonium melt between 1.62T_c and 1.87T_c

Extend Bayesian Analysis

Strong correlation between correlators measured on same gauge configurations

$$\sigma = \sigma[D(p=0)] + \sigma[D(p=4)]$$

$$\sigma = \sigma[D(p=0) - D(p=4)]$$

Correlators measured on same configuration have strong correlation

Improvement of MEM

More information \implies The error of MEM will be reduced

Lattice setup

- Quenched QCD
- Wilson Fermion
- Anisotropic lattice: $a_{\sigma}/a_{\tau} = 4.0$

setup								
	$N_{ au}$	$T/T_{\rm c}$	N_{σ}	$L_{\sigma}[\mathbf{fm}]$	a_{τ} [fm]	a_{σ}/a_{τ}	β	N _{conf}
-	32	2.33	64	2.496	0.00975	4	7.0	396
	40	1.87	64	2.496	0.00975	4	7.0	400
	42	1.78	64	2.496	0.00975	4	7.0	427
	44	1.70	64	2.496	0.00975	4	7.0	407
	46	1.62	64	2.496	0.00975	4	7.0	401
	96	0.78	64	2.496	0.00975	4	7.0	207
								[Nonaka

- Analyze two correlators (0, 4 GeV) together
- The width of the peak becomes narrow

A.Ikeda (Osaka University)

Drastic Reduction of Error

Pseudo scalar, $1.70T_c$, p=0

- Analyze two correlators (0, 4 GeV) together
- The width of the peak becomes narrow

A.Ikeda (Osaka University)

Dispersion relation

Pseudo scalar spectral function at finite temperature

Bound states of charmonium suvives up to 1.70T_c

 \implies Analyze the dispersion relation of charmonium below 1.70Tc

Dispersion relation

Momentum dependence of spectral peaks

Error estimate

Dispersion relation: Conventional Method

- Mass Shift: Temperature ↑ ⇒ Mass ↑
- Dispersion relation from Lorentz invariance

$$\omega = \sqrt{m}\Big|_{p=0}^2 + p^2$$

Large error at middle and high momentum

- Big improvement at low and middle momentum
- Dispersion relation follows Lorentz invariance in the finite temperature medium

Conclusion and future work

Conclusion

- We extend the MEM analysis to the product space of the correlators to take advantage of more data and the strong correlation among Euclidean correlators with different momenta.
 - Improved MEM reduce the error of reconstructed image.
- We analyze the dispersion relation of charmonium at finite temperature
 - Mass shift is observed.
 - Above Tc the dispersion relation of charmonium follows Lorentz invariance.

Future work

- Multi-dimensional α
- Other temperature
- Analysis for more than 3 correlators
- Analysis for between different channel, ...

Multi-dimensional α

- α which maximize $P(A, \alpha)$ is different for each correlator.
- Reconstructed image with worse default model compared with others is influenced by default model more than necessary.

Likelihood function

Likelihood function: χ^2

$$\exp(-L) = \exp\left[-\frac{1}{2}\sum_{i,j} \left(D(\tau_i) - D_A(\tau_i)\right)C_{ij}^{-1}\left(D(\tau_j) - D_A(\tau_j)\right)\right]$$
$$D(\tau_i) = \frac{1}{N_{\text{conf}}}\sum_{m=1}^{N_{\text{conf}}} D^m(\tau_i)$$

Covariance matrix

$$C_{ij} = \frac{1}{N_{\text{conf}}(N_{\text{conf}} - 1)} \sum_{m=1}^{N_{\text{conf}}} (D^m(\tau_i) - D(\tau_i)) (D^m(\tau_j) - D(\tau_j))$$

Prior probability

Prior probability: Shannon-Jaynes entropy

$$\exp(\alpha S) = \exp\left(\alpha \int_0^\infty \left[A(\omega) - m(\omega) - A(\omega)\log\left(\frac{A(\omega)}{m(\omega)}\right)\right]d\omega\right)$$

Consistency with Prior knowledge

2 default model $m(\omega)$

- pQCD: $m(\omega) = m_0 \omega^2$
- $m_0 = 0.40$ (vector), 1.15(pseudo scalar)
- ▶ Bad default model ⇒ Big error

Probability of image A

$$P(A,\alpha) = \exp(\alpha S - L)$$

