Chik Him (Ricky) Wong

Outline

Review

Preliminary result:

Simulation Detail

Scale-setting

Finite Size Scalin

Taste-breaking check

Light 0++ ground state

as Higgs Impostor

Other channels

Summary

Studies on Topological Effect

Conclusion

## The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Lattice Higgs Collaboration (LHC): Zoltán Fodor <sup>\$</sup>, Kieran Holland <sup>\*</sup>, Julius Kuti <sup>†</sup>, Santanu Mondal <sup>-</sup>, Dániel Nógrádi <sup>-</sup>, Chik Him Wong <sup>†</sup>

+: University of California, San Diego \*: University of the Pacific \$: University of Wuppertal -: Eötvös University

### LATTICE 2014

Chik Him (Ricky) Wong

#### Outline

Review

- Preliminary results
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground stat
- as Higgs Impostor
- Other channels
- Summary
- Studies on Topological Effect:

Conclusion

### Outline

- Review: Sextet model as Composite Higgs candidate
- Hadron Spectroscopy on Extended Dataset
  - Simulation Details
  - Scale-setting:  $M_{\pi}$  and  $F_{\pi}$
  - Taste-breaking check:  $M_{\pi_{sc}}$ ,  $M_{\pi_{ij}}$  and  $M_{\pi_{i5}}$
  - Light  $0^{++}$  ground state  $M_{f_0}$  as Higgs Impostor
  - Other phenomenologically interesting channels:
    - LHC reachable:  $M_{a_0}, M_{\rho}, M_{a_1}$
    - Dark Matter candidate:  $M_N$
- Study on topological effects
- Conclusion

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

as Higgs Impostor

Other channels

Summary

Studies on Topological Effect

Conclusion

### **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology

• Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$ 



Chik Him (Ricky) Wong

Outline

Review

- Preliminary results
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channels
- Summary
- Studies on Topological Effect

Conclusion

### **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology
  - Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$



Chik Him (Ricky) Wong

Outline

Review

- Preliminary results
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channels
- Summary
- Studies on Topological Effect

Conclusion

### **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology
- Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$



Chik Him (Ricky) Wong

Outline

Review

- Preliminary results
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channels
- Summary
- Studies on Topological Effect

Conclusion

### **Review:**

### Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0<sup>++</sup> Higgs + reproduce detected phenomenology
- Parameter Space: $N_C$ ,  $N_f$ , Representations of  $SU(N_C)$



Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary result
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking check
- Light 0++ ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effects

Conclusion

### Review: Sextet model as Composite Higgs candidate

### • $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model

- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Hadron Spectrum: more consistent with XSB than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- $\beta$  function is being studied (details in Julius Kuti's talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0<sup>++</sup> spectroscopy

#### Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary result
- Simulation Detail
- Scale-setting
- Finite Size Scalin
- Taste-breaking check
- Light 0++ ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effect:

Conclusion

# Review:

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Hadron Spectrum: more consistent with XSB than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- $\beta$  function is being studied (details in Julius Kuti's talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0<sup>++</sup> spectroscopy

#### Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary result
- Simulation Detail
- Scale-setting
- Finite Size Scalin
- Taste-breaking check
- Light 0++ ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effect

Conclusion

# Review:

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Hadron Spectrum: more consistent with χSB than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- $\beta$  function is being studied (details in Julius Kuti's talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0<sup>++</sup> spectroscopy

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary result
- Simulation Detail
- Scale-setting
- Finite Size Scalin
- Taste-breaking check
- Light 0++ ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effect

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Hadron Spectrum: more consistent with  $\chi$ SB than Conformal hypothesis (Foder et al, Phys.Lett B 718, p. 657-666)
- $\beta$  function is being studied (details in Julius Kuti's talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0<sup>++</sup> spectroscopy

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary result
- Simulation Detail
- Scale-setting
- Finite Size Scalin
- Taste-breaking check
- Light 0++ ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effects

Conclusion

## **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Hadron Spectrum: more consistent with  $\chi$ SB than Conformal hypothesis (Foder et al, Phys.Lett B 718, p. 657-666)
- $\beta$  function is being studied (details in Julius Kuti's talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0<sup>++</sup> spectroscopy

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary result
- Simulation Detail
- Scale-setting
- Finite Size Scalin
- Taste-breaking check
- Light 0<sup>++</sup> ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effects

Conclusion

## **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Hadron Spectrum: more consistent with χSB than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- $\beta$  function is being studied (details in Julius Kuti's talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0<sup>++</sup> spectroscopy

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary result
- Simulation Detail
- Scale-setting
- Finite Size Scalin
- Taste-breaking check
- Light 0<sup>++</sup> ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effect

Conclusion

## **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Hadron Spectrum: more consistent with χSB than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- $\beta$  function is being studied (details in Julius Kuti's talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0<sup>++</sup> spectroscopy

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary result
- Simulation Detail
- Scale-setting
- Finite Size Scalin
- Taste-breaking check
- Light 0<sup>++</sup> ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effects

Conclusion

### **Review:**

- $SU(3) N_f = 2$  Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still  $\chi$ SB
  - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
  - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
  - Hadron Spectrum: more consistent with χSB than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- $\beta$  function is being studied (details in Julius Kuti's talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0<sup>++</sup> spectroscopy

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary results
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channels
- Summary
- Studies on Topological Effect
- Conclusion

### Review: Sextet model as Composite Higgs candidate



- $M_{f_0}$  can be as light as 1F 3F = 250 750 GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)
- This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary results
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channels
- Summary
- Studies on Topological Effect
- Conclusion

### Review: Sextet model as Composite Higgs candidate



- $M_{f_0}$  can be as light as 1F 3F = 250 750 GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)
- This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary results
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channels
- Summary
- Studies on Topological Effect
- Conclusion

### Review: Sextet model as Composite Higgs candidate



- $M_{f_0}$  can be as light as 1F 3F = 250 750 GeV
- Radiative corrections due to top quarks can turn it into a Higgs
  Impostor (Foadi et al, Phys. Rev. D 87, 095001)
- This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis

Chik Him (Ricky) Wong

Outline

#### Review

- Preliminary results
- Simulation Detail
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channels
- Summary
- Studies on Topological Effect
- Conclusion

### Review: Sextet model as Composite Higgs candidate



- $M_{f_0}$  can be as light as 1F 3F = 250 750 GeV
- Radiative corrections due to top quarks can turn it into a Higgs
  Impostor (Foudi et al, Phys. Rev. D 87, 095001)
- This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis

Chik Him (Ricky) Wong

Outline

Review

#### Preliminary results

#### Simulation Details

- Scale-setting
- Finite Size Scalir
- Taste-breaking checks
- Light 0++ ground stat
- as Higgs Impostor
- Other channe
- Summary

Studies on Topological Effects

Conclusion

- Action: Tree-level Symanzik-Improved gauge action with Staggered  $N_f = 2$  Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20$  and 3.25, which is in the weak coupling regime
- Lattices available:(  $\sim 2000 4000$  Trajectories each)

|      | 32 | 64 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008  |
|------|----|----|-------------------------------------------|
|      |    | 56 |                                           |
|      | 24 | 48 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, |
|      |    |    |                                           |
| 3.25 |    |    |                                           |
|      |    |    |                                           |
|      | 32 | 64 | 0.004,  0.005,  0.006,  0.007,  0.008     |
|      | 28 | 56 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008  |
|      |    | 48 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008  |
|      |    |    | ▲□▶▲□▶▲壹▶▲壹▶ 壹                            |

Chik Him (Ricky) Wong

Outline

Review

#### Preliminary results

#### Simulation Details

- Scale-setting
- Finite Size Scalir
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channel
- Summary

Studies on Topological Effect

Conclusion

- Action: Tree-level Symanzik-Improved gauge action with Staggered  $N_f = 2$  Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20$  and 3.25, which is in the weak coupling regime
- Lattices available: (  $\sim 2000 4000$  Trajectories each)

|      | 32 | 64 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008  |
|------|----|----|-------------------------------------------|
|      |    | 56 |                                           |
|      | 24 | 48 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, |
|      |    |    |                                           |
| 3.25 |    |    |                                           |
|      |    |    |                                           |
|      | 32 | 64 | 0.004,  0.005,  0.006,  0.007,  0.008     |
|      | 28 | 56 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008  |
|      |    | 48 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008  |
|      |    |    | ▲□▶▲□▶▲壹▶▲壹▶ 壹                            |

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

#### Simulation Details

- Scale-setting
- Finite Size Scalin
- Taste-breaking checks
- Light 0++ ground state
- as Higgs Impostor
- Other channel
- Summary

Studies on Topological Effect

Conclusion

- Action: Tree-level Symanzik-Improved gauge action with Staggered  $N_f = 2$  Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20$  and 3.25, which is in the weak coupling regime
- Lattices available: (  $\sim 2000 4000$  Trajectories each)

|      |    | 64 |                                           |
|------|----|----|-------------------------------------------|
|      |    | 56 |                                           |
|      | 24 | 48 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, |
|      |    |    |                                           |
| 3.25 |    |    |                                           |
|      |    |    |                                           |
|      | 32 | 64 | 0.004,  0.005,  0.006,  0.007,  0.008     |
|      | 28 | 56 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008  |
|      |    | 48 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008  |
|      |    |    | ▲□▶▲□▶▲□▶▲□▶ ▲□▶ ■                        |

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

#### Simulation Details

- Scale-setting
- Finite Size Scalir
- Taste-breaking checks
- Light 0++ ground stat
- as Higgs Impostor
- Other channel
- Summary

Studies on Topological Effects

Conclusion

- Action: Tree-level Symanzik-Improved gauge action with Staggered  $N_f = 2$  Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20$  and 3.25, which is in the weak coupling regime
- Lattices available: (  $\sim 2000 4000$  Trajectories each)

| β    | L  | T  | $m_q$                                         |
|------|----|----|-----------------------------------------------|
| 3.20 | 48 | 96 | 0.002, 0.003, 0.004                           |
|      | 40 | 80 | 0.002, 0.003, 0.004                           |
|      | 32 | 64 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008      |
|      | 28 | 56 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008      |
|      | 24 | 48 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008,     |
|      |    |    | 0.009,  0.010,  0.012,  0.014                 |
| 3.25 | 48 | 96 | 0.002, 0.003, 0.004                           |
|      | 40 | 80 | 0.002, 0.003, 0.004                           |
|      | 32 | 64 | 0.004,  0.005,  0.006,  0.007,  0.008         |
|      | 28 | 56 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008      |
|      | 24 | 48 | 0.003, 0.004, 0.005, 0.006, 0.007, 0.008      |
|      |    |    | (日)(四)(三)(三)(三)(三)(三)(三)(三)(三)(三)(三)(三)(三)(三) |

Chik Him (Ricky) Wong

Outline

Review

Preliminary result

Simulation Details

#### Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

as Higgs Impostor

Other channels

Summary

Studies on Topological Effec

Conclusion

### Hadron Spectroscopy on Extended Dataset -Scale-setting

### • $M_{\pi}$ determination



#### Chik Him (Ricky) Wong

Outline

Review

#### Preliminary results

Simulation Details

#### Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

as Higgs Impostor

Other channels

Summary

Studies on Topological Effect

Conclusion

### Hadron Spectroscopy on Extended Dataset -Scale-setting

### • $F_{\pi}$ determination



#### Chik Him (Ricky) Wong

Outline

Review

- Preliminary result
- Simulation Details
- Scale-setting

#### Finite Size Scaling

- Taste-breaking checks Light 0<sup>++</sup> ground state as Higgs Impostor Other channels
- Summary
- Studies on Topological Effect:

Conclusion

## Hadron Spectroscopy on Extended Dataset -Finite Size Scaling

### • Finite Size Scaling is under control



 Largest volume data available (48<sup>3</sup> × 96 or 32<sup>3</sup> × 64) are taken as infinite volume values

#### Chik Him (Ricky) Wong

Outline

Review

- Preliminary result
- Simulation Details
- Scale-setting

#### Finite Size Scaling

- Taste-breaking checks Light **0**<sup>++</sup> ground state as Higgs Impostor Other channels
- Summary

Studies on Topological Effect

Conclusion

## Hadron Spectroscopy on Extended Dataset -Finite Size Scaling

### • Finite Size Scaling is under control



• Largest volume data available  $(48^3 \times 96 \text{ or } 32^3 \times 64)$  are taken as infinite volume values

#### Chik Him (Ricky) Wong

Outline

Review

- Preliminary result
- Simulation Details
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0<sup>++</sup> ground state as Higgs Impostor
- Summary
- Studies on Topological Effec
- Conclusion

## Hadron Spectroscopy on Extended Dataset -Taste-breaking checks

•  $M_{\pi_{sc}}, M_{\pi_{i5}}, M_{\pi_{ii}}$ 



• Taste-breaking is reduced at larger  $\beta$ 

#### Chik Him (Ricky) Wong

Outline

Review

- Preliminary result
- Simulation Details
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0<sup>++</sup> ground state as Higgs Impostor
- Summary
- Studies on Topological Effec

Conclusion

## Hadron Spectroscopy on Extended Dataset -Taste-breaking checks

•  $M_{\pi_{sc}}, M_{\pi_{i5}}, M_{\pi_{ii}}$ 



• Taste-breaking is reduced at larger  $\beta$ 

Chik Him (Ricky) Wong

Outline

Review

Preliminary result

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0<sup>++</sup> ground state as Higgs Impostor

Other channels

Summary

Studies on Topological Effec

Conclusion

## Hadron Spectroscopy on Extended Dataset -Light 0<sup>++</sup> ground state as Higgs Impostor

•  $M_{a_0}$  and  $M_{f_0}$ 



•  $M_{f_0}$  remains low and difficult to determine

Mixing with glueball operators may help

• Most-sensitive to topological effects that may not be under full control (more in later slides)

Chik Him (Ricky) Wong

Outline

Review

Preliminary result

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0<sup>++</sup> ground state as Higgs Impostor

Other channels

Summary

Studies on Topological Effec

Conclusion

## Hadron Spectroscopy on Extended Dataset -Light 0<sup>++</sup> ground state as Higgs Impostor

•  $M_{a_0}$  and  $M_{f_0}$ 



- $M_{f_0}$  remains low and difficult to determine
- Mixing with glueball operators may help
- Most-sensitive to topological effects that may not be under full control (more in later slides)

Chik Him (Ricky) Wong

Outline

Review

Preliminary result

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0<sup>++</sup> ground state as Higgs Impostor

Other channels

Summary

Studies on Topological Effec

Conclusion

## Hadron Spectroscopy on Extended Dataset -Light 0<sup>++</sup> ground state as Higgs Impostor

•  $M_{a_0}$  and  $M_{f_0}$ 



- $M_{f_0}$  remains low and difficult to determine
- Mixing with glueball operators may help
- Most-sensitive to topological effects that may not be under full control (more in later slides)

Chik Him (Ricky) Wong

Outline

Review

Preliminary result

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0<sup>++</sup> ground state as Higgs Impostor

Other channels

Summary

Studies on Topological Effec

Conclusion

## Hadron Spectroscopy on Extended Dataset -Light 0<sup>++</sup> ground state as Higgs Impostor

•  $M_{a_0}$  and  $M_{f_0}$ 



- $M_{f_0}$  remains low and difficult to determine
- Mixing with glueball operators may help
- Most-sensitive to topological effects that may not be under full control (more in later slides)

Chik Him (Ricky) Wong

Outline

Review

Preliminary result

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground stat

as Higgs Impostor

Other channels

Summary

Studies on Topological Effect

Conclusion

### Hadron Spectroscopy on Extended Dataset -Other channels

•  $M_{\rho}$  and  $M_{a_1}$ 



• Lowest states within reach of LHC

Chik Him (Ricky) Wong

Outline

Review

Preliminary result

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground stat

as Higgs Impostor

Other channels

Summary

Studies on Topological Effect

Conclusion

## Hadron Spectroscopy on Extended Dataset -Other channels

•  $M_{\rho}$  and  $M_{a_1}$ 



Lowest states within reach of LHC

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scalin

Taste-breaking check

Light 0++ ground state

as Higgs Impostor

Other channels

Summary

Studies on Topological Effects

Conclusion

## Hadron Spectroscopy on Extended Dataset -Other channels

### • Dark Matter candidate: $M_N$

• Tricky to construct due to symmetric color structure (details in Santanu Mondal's talk)



• Clean signals are observed for the first time.

13/17

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

Other channels

Other channels

Summary

Studies on Topological Effects

Conclusion

## Hadron Spectroscopy on Extended Dataset -Other channels

- Dark Matter candidate:  $M_N$
- Tricky to construct due to symmetric color structure (details in Santanu Mondal's talk)



• Clean signals are observed for the first time.

13/17

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

Other channels

Studies on Topological Effect:

Conclusion

## Hadron Spectroscopy on Extended Dataset -Other channels

- Dark Matter candidate:  $M_N$
- Tricky to construct due to symmetric color structure (details in Santanu Mondal's talk)



Clean signals are observed for the first time.

13/17

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

as Higgs Impostor

Other channe

#### Summary

Studies on Topological Effects

Conclusion

### Hadron Spectroscopy on Extended Dataset

### • Summary:

| β          | 3.20                                                                                     | 3.25                                                  |
|------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $M_N$      | 12.98(68)F = 3.19(17) TeV                                                                | -                                                     |
| $M_{a_1}$  | 9.83(97)F = 2.42(24) TeV                                                                 | 11.00(28)F = 2.707(68) TeV                            |
| $M_{\rho}$ | 7.98(37)F = 1.964(91) TeV                                                                | 7.52(26)F = 1.850(63) TeV                             |
| $M_{a_0}$  | 5.72(26)F = 1.406(63) TeV                                                                | 8.16(29)F = 2.01(72) TeV                              |
| $M_{f_0}$  | $\sim 1F$                                                                                | 3.9(1.5)F = 0.95(36) TeV                              |
|            | 20<br>18<br>16<br>14<br>12<br>10<br>8<br>10<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

- *M*<sub>*a*<sub>0</sub></sub> changes by a lot, probably due to under-estimated errors or topological effects (more on this in coming slides)
- More controls on systematics are needed for  $M_0^{\circ}$  determination ?

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

as Higgs Impostor

Other channel

#### Summary

Studies on Topological Effects

Conclusion

### Hadron Spectroscopy on Extended Dataset

### • Summary:

| β              | 3.20                                                                                                          | 3.25                                                  |
|----------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $M_N$          | 12.98(68)F = 3.19(17) TeV                                                                                     | -                                                     |
| $M_{a_1}$      | 9.83(97)F = 2.42(24) TeV                                                                                      | 11.00(28)F = 2.707(68) TeV                            |
| M <sub>ρ</sub> | 7.98(37)F = 1.964(91) TeV                                                                                     | 7.52(26)F = 1.850(63) TeV                             |
| $M_{a_0}$      | 5.72(26)F = 1.406(63) TeV                                                                                     | 8.16(29)F = 2.01(72) TeV                              |
| $M_{f_0}$      | $\sim 1F$                                                                                                     | 3.9(1.5)F = 0.95(36) TeV                              |
|                | $\begin{array}{c} 20\\ 18\\ 16\\ 14\\ 12\\ 12\\ 10\\ 8\\ 8\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

- $M_{a_0}$  changes by a lot, probably due to under-estimated errors or topological effects (more on this in coming slides)
- More controls on systematics are needed for Mgo determination

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

as Higgs Impostor

Other chann

Summary

Studies on Topological Effects

Conclusion

### Hadron Spectroscopy on Extended Dataset

### • Summary:

| β              | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.25                                                  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $M_N$          | 12.98(68)F = 3.19(17) TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                     |
| $M_{a_1}$      | 9.83(97)F = 2.42(24) TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.00(28)F = 2.707(68) TeV                            |
| M <sub>ρ</sub> | 7.98(37)F = 1.964(91) TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.52(26)F = 1.850(63) TeV                             |
| $M_{a_0}$      | 5.72(26)F = 1.406(63) TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.16(29)F = 2.01(72) TeV                              |
| $M_{f_0}$      | $\sim 1F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9(1.5)F = 0.95(36) TeV                              |
|                | $\begin{array}{c} 20\\ 18\\ 16\\ 14\\ 12\\ 12\\ 10\\ 8\\ 8\\ 6\\ 1 \\ 12\\ 10\\ 10\\ 1 \\ 12\\ 10\\ 10\\ 1 \\ 12\\ 10\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 1 \\ 12\\ 12$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

- $M_{a_0}$  changes by a lot, probably due to under-estimated errors or topological effects (more on this in coming slides)
- More controls on systematics are needed for  $M_{f_0}$  determination

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground sta

as Higgs Impostor

Cummum.

#### Studies on Topological Effects

Conclusion

## **Studies on Topological Effects**

• Slow topological tunneling in HMC simulations  $\Rightarrow$  What is the Q-dependence of hadron masses?



- No *Q*-dependence detected...But is it actually there? How about other channels?
- A more careful investigation with more distinct *Q*-values at larger volume in more channels is required

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground sta

as Higgs Impostor

Other chan

Summary

Studies on Topological Effects

Conclusion

### **Studies on Topological Effects**

• Slow topological tunneling in HMC simulations  $\Rightarrow$  What is the *Q*-dependence of hadron masses?



- No *Q*-dependence detected...But is it actually there? How about other channels?
- A more careful investigation with more distinct *Q*-values at larger volume in more channels is required

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Details

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground sta

as Higgs Impostor

Other chan

Summary

Studies on Topological Effects

Conclusion

### **Studies on Topological Effects**

• Slow topological tunneling in HMC simulations  $\Rightarrow$  What is the *Q*-dependence of hadron masses?



- No *Q*-dependence detected...But is it actually there? How about other channels?
- A more careful investigation with more distinct *Q*-values at larger volume in more channels is required

Chik Him (Ricky) Wong

Outline

Review

- Preliminary results
- Simulation Details
- Scale-setting
- Finite Size Scaling
- Taste-breaking checks
- Light 0++ ground sta
- as Higgs Impostor
- Other chann
- Summary

Studies on Topological Effects

Conclusion

### **Studies on Topological Effects**

• Slow topological tunneling in HMC simulations  $\Rightarrow$  What is the *Q*-dependence of hadron masses?



- No *Q*-dependence detected...But is it actually there? How about other channels?
- A more careful investigation with more distinct *Q*-values at larger volume in more channels is required

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Detail

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light  $0^{++}$  ground state

as Higgs Impostor

Other chann

Summary

#### Studies on Topological Effects

Conclusion

## **Studies on Topological Effects**

### • Two separate runs with very different Q values



• About  $1 - \sigma$  effect is observed in  $M_{a_0}$  and  $M_{f_0}$ , less significant in  $M_{\pi}$  and  $F \Rightarrow$  More controls are needed

• Other studies on topological effects are undergoing (more details in Julius Kuti's talk)

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Detail

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light  $0^{++}$  ground state

as Higgs Impostor

Other chann

Studies on

Topological Effects

Conclusion

## **Studies on Topological Effects**

### • Two separate runs with very different Q values



- About  $1 \sigma$  effect is observed in  $M_{a_0}$  and  $M_{f_0}$ , less significant in  $M_{\pi}$  and  $F \Rightarrow$  More controls are needed
- Other studies on topological effects are undergoing (more details in Julius Kuti's talk)

Chik Him (Ricky) Wong

Outline

Review

Preliminary results

Simulation Detail

Scale-setting

Finite Size Scaling

Taste-breaking checks

Light 0++ ground state

as Higgs Impostor

Other chann

\_\_\_\_

Studies on Topological Effects

Conclusion

## **Studies on Topological Effects**

### • Two separate runs with very different Q values



- About  $1 \sigma$  effect is observed in  $M_{a_0}$  and  $M_{f_0}$ , less significant in  $M_{\pi}$  and  $F \Rightarrow$  More controls are needed
- Other studies on topological effects are undergoing (more details in Julius Kuti's talk)

#### Chik Him (Ricky) Wong

Outline

Review

- Preliminary result
- Simulation Details
- Scale-setting
- Finite Size Scalin
- Taste-breaking check
- Light 0++ ground sta
- as Higgs Impostor
- Other chann
- Summary
- Studies on Topological Effects

Conclusion

- The dataset has been extended in larger volumes, more fermion masses and more bare couplings.
- $f_0$  remains light but more efforts are still needed to determine the mass.
- A few important quantities have been studied:
  - Phenomenologically interesting channels  $M_0, M_m, M_m$  are studied and their masses are within reach of LHC.
  - Dark Matter candidate  $M_N$  is studied for the first time (more details in Santanu Mondal's talk)
- Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti's talk)

Chik Him (Ricky) Wong

Outline

Review

- Preliminary result
- Simulation Details
- Scale-setting
- Finite Size Scaling
- Taste-breaking check
- Light 0<sup>++</sup> ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effects

Conclusion

- The dataset has been extended in larger volumes, more fermion masses and more bare couplings.
- $f_0$  remains light but more efforts are still needed to determine the mass.
- A few important quantities have been studied:
  - Phenomenologically interesting channels  $M_0$ ,  $M_{u_0}$ ,  $M_{u_0}$  are studied and their masses are within reach of LHC.
  - Dark Matter candidate  $M_N$  is studied for the first time (more details in Santanu Mondal's talk)
- Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti's talk)

#### Chik Him (Ricky) Wong

Outline

Review

- Preliminary results
- Simulation Details
- Scale-setting
- Finite Size Scaling
- Taste-breaking check
- Light 0++ ground sta
- as Higgs Impostor
- Other chann
- Summary
- Studies on Topological Effects

Conclusion

- The dataset has been extended in larger volumes, more fermion masses and more bare couplings.
- $f_0$  remains light but more efforts are still needed to determine the mass.
- A few important quantities have been studied:
  - Phenomenologically interesting channels  $M_{\rho}, M_{a_0}, M_{a_1}$  are studied and their masses are within reach of LHC.
  - Dark Matter candidate  $M_N$  is studied for the first time (more details in Santanu Mondal's talk)
- Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti's talk)

#### Chik Him (Ricky) Wong

Outline

Review

- Preliminary results
- Simulation Details
- Scale-setting
- Finite Size Scaling
- Taste-breaking check
- Light 0++ ground sta
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effects

Conclusion

- The dataset has been extended in larger volumes, more fermion masses and more bare couplings.
- $f_0$  remains light but more efforts are still needed to determine the mass.
- A few important quantities have been studied:
  - Phenomenologically interesting channels  $M_{\rho}, M_{a_0}, M_{a_1}$  are studied and their masses are within reach of LHC.
  - Dark Matter candidate  $M_N$  is studied for the first time (more details in Santanu Mondal's talk)
- Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti's talk)

Chik Him (Ricky) Wong

Outline

Review

- Preliminary results
- Simulation Details
- Scale-setting
- Finite Size Scaling
- Taste-breaking check
- Light 0<sup>++</sup> ground st
- as Higgs Impostor
- Other channe
- Summary
- Studies on Topological Effect:

Conclusion

- The dataset has been extended in larger volumes, more fermion masses and more bare couplings.
- $f_0$  remains light but more efforts are still needed to determine the mass.
- A few important quantities have been studied:
  - Phenomenologically interesting channels  $M_{\rho}, M_{a_0}, M_{a_1}$  are studied and their masses are within reach of LHC.
  - Dark Matter candidate  $M_N$  is studied for the first time (more details in Santanu Mondal's talk)
- Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti's talk)

Chik Him (Ricky) Wong

Outline

Review

- Preliminary results
- Simulation Details
- Scale-setting
- Finite Size Scaling
- Taste-breaking check
- Light 0++ ground st
- as Higgs Impostor
- Other channel
- Summary
- Studies on Topological Effects

Conclusion

- The dataset has been extended in larger volumes, more fermion masses and more bare couplings.
- $f_0$  remains light but more efforts are still needed to determine the mass.
- A few important quantities have been studied:
  - Phenomenologically interesting channels  $M_{\rho}, M_{a_0}, M_{a_1}$  are studied and their masses are within reach of LHC.
  - Dark Matter candidate  $M_N$  is studied for the first time (more details in Santanu Mondal's talk)
- Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti's talk)