The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Lattice Higgs Collaboration (LHC):
Zoltán Fodor $, Kieran Holland $*,
Julius Kuti $†, Santanu Mondal $−,
Dániel Nógrádi $−, Chik Him Wong $†

†: University of California, San Diego *: University of the Pacific $: University of Wuppertal -: Eötvös University
Outline

- Review: Sextet model as Composite Higgs candidate
- Hadron Spectroscopy on Extended Dataset
 - Simulation Details
 - Scale-setting: M_{π} and F_{π}
 - Taste-breaking check: $M_{\pi_{sc}}$, $M_{\pi_{ij}}$, and $M_{\pi_{i5}}$
 - Light 0^{++} ground state $M_{f_{0}}$ as Higgs Impostor
 - Other phenomenologically interesting channels:
 - LHC reachable: $M_{a_{0}}$, M_{ρ}, $M_{a_{1}}$
 - Dark Matter candidate: M_{N}
- Study on topological effects
- Conclusion
Review:
Sextet model as Composite Higgs candidate

- Goal: Look for a Composite Higgs model:
 An infrared fixed point almost exists + Confining below
 Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery: Light 0^{++} Higgs + reproduce
detected phenomenology
- Parameter Space: N_C, N_f, Representations of $SU(N_C)$

- Focus of this talk: $SU(3) N_f = 2$ Sextet(Two-index symmetric)
 Model
Goal: Look for a Composite Higgs model:
An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
After Higgs boson discovery: Light 0^{++} Higgs + reproduce detected phenomenology
Parameter Space: N_C, N_f, Representations of $SU(N_C)$

Focus of this talk: $SU(3)\ N_f = 2$ Sextet(Two-index symmetric) Model
Review:
Sextet model as Composite Higgs candidate

- **Goal:** Look for a Composite Higgs model:
 - An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
 - After Higgs boson discovery: Light 0^{++} Higgs + reproduce detected phenomenology
 - Parameter Space: N_C, N_f, Representations of $SU(N_C)$

Focus of this talk: $SU(3)$ $N_f = 2$ Sextet(Two-index symmetric) Model
Review: Sextet model as Composite Higgs candidate

- **Goal:** Look for a Composite Higgs model:
 An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
- **After Higgs boson discovery:** Light 0^{++} Higgs + reproduce detected phenomenology
- **Parameter Space:** N_C, N_f, Representations of $SU(N_C)$

- Focus of this talk: $SU(3) \ N_f = 2$ Sextet(Two-index symmetric) Model
Review:

Sextet model as Composite Higgs candidate

- **SU(3) \(N_f = 2 \) Sextet (Two-index symmetric) Model**
- Intrinsically very close to Conformal Window
- Seems to be still \(\chi \text{SB} \)
 - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
 - Hadron Spectrum: more consistent with \(\chi \text{SB} \) than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- \(\beta \) function is being studied (details in Julius Kuti’s talk)
- Can a Higgs Impostor be hidden in this model? \(\Rightarrow \) Investigate \(0^{++} \) spectroscopy
Review:
Sextet model as Composite Higgs candidate

SU(3) \(N_f = 2\) Sextet(Two-index symmetric) Model

- Intrinsically very close to Conformal Window
- Seems to be still \(\chi_{SB}\)
 - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
 - Hadron Spectrum: more consistent with \(\chi_{SB}\) than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)

- \(\beta\) function is being studied (details in Julius Kuti’s talk)
- Can a Higgs Impostor be hidden in this model? \(\Rightarrow\) Investigate \(0^{++}\) spectroscopy
Review: Sextet model as Composite Higgs candidate

- $SU(3) \, N_f = 2$ Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still χ_{SB}
 - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
 - Hadron Spectrum: more consistent with χ_{SB} than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- β function is being studied (details in Julius Kuti’s talk)
- Can a Higgs Impostor be hidden in this model? \Rightarrow Investigate 0^{++} spectroscopy
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light \(0^{++}\) ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Review:
Sextet model as Composite Higgs candidate

- \(SU(3)\) \(N_f = 2\) Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still \(\chi_{SB}\)
 - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
 - Hadron Spectrum: more consistent with \(\chi_{SB}\) than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- \(\beta\) function is being studied (details in Julius Kuti’s talk)
- Can a Higgs Impostor be hidden in this model? \(\Rightarrow\) Investigate \(0^{++}\) spectroscopy
Review:
Sextet model as Composite Higgs candidate

- $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still χSB
 - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
 - Hadron Spectrum: more consistent with χSB than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- β function is being studied (details in Julius Kuti’s talk)
- Can a Higgs Impostor be hidden in this model? \Rightarrow Investigate 0^{++} spectroscopy
Review: Sextet model as Composite Higgs candidate

SU(3) N_f = 2 Sextet (Two-index symmetric) Model

- Intrinsically very close to Conformal Window
- Seems to be still \(\chi_{\text{SB}} \)
 - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
 - Hadron Spectrum: more consistent with \(\chi_{\text{SB}} \) than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)

- \(\beta \) function is being studied (details in Julius Kuti’s talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0^{++} spectroscopy
Review:
Sextet model as Composite Higgs candidate

- $SU(3) \ N_f = 2$ Sextet(Two-index symmetric) Model
- Intrinsically very close to Conformal Window
- Seems to be still χ_{SB}
 - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
 - Hadron Spectrum: more consistent with χ_{SB} than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)
- β function is being studied (details in Julius Kuti’s talk)
- Can a Higgs Impostor be hidden in this model? \Rightarrow Investigate 0^{++} spectroscopy
Review: Sextet model as Composite Higgs candidate

SU(3) \(N_f = 2 \) Sextet (Two-index symmetric) Model

- Intrinsically very close to Conformal Window
- Seems to be still \(\chi_{SB} \)
 - Chiral Condensate: non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - Effective Potential: confining (Fodor et al, PoS (Lattice 2012) 025)
 - Hadron Spectrum: more consistent with \(\chi_{SB} \) than Conformal hypothesis (Fodor et al, Phys.Lett B 718, p. 657-666)

- \(\beta \) function is being studied (details in Julius Kuti’s talk)
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate \(0^{++} \) spectroscopy
Review: Sextet model as Composite Higgs candidate

Previously... (Fodor et al, PoS (LATTICE 2013) 062)

- M_{f_0} can be as light as $1F - 3F = 250 - 750$ GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)

This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis.
Review: Sextet model as Composite Higgs candidate

- Previously... (Fodor et al, PoS (LATTICE 2013) 062)

- M_{f^0} can be as light as $1F - 3F = 250 - 750$ GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)

- This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis
Review:
Sextet model as Composite Higgs candidate

Previously... (Fodor et al, PoS (LATTICE 2013) 062)

- M_{f_0} can be as light as $1F - 3F = 250 - 750$ GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)

- This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis

Triplet and singlet masses from 0^{++} correlators

$M_{t/s} = a_{t/s} + b_{t/s} m$ (fitting functions) $\beta = 3.2 \times 64$

$F = 0.0279 (4)$ setting the EWSB scale

$M_{H}/F \sim 1-3$ range

$F^+ = \frac{M_{H}}{F} \approx 1-3$ range

Triplet and singlet masses from 0^{++} correlators

- M_{f_0} can be as light as $1F - 3F = 250 - 750$ GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)

This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis

$F = 0.0279 (4)$ setting the EWSB scale

$M_{H}/F \sim 1-3$ range
Review:
Sextet model as Composite Higgs candidate

Previously... (Fodor et al, PoS (LATTICE 2013) 062)

- M_{f_0} can be as light as $1F - 3F = 250 - 750$GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (Foadi et al, Phys. Rev. D 87, 095001)

This talk is the report of preliminary results from an ongoing follow-up study with more data on more channels with more analysis.
Hadron Spectroscopy on Extended Dataset - Simulation Details

- Action: Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv \frac{6}{g^2} = 3.20$ and 3.25, which is in the weak coupling regime
- Lattices available: (~2000 – 4000 Trajectories each)

<table>
<thead>
<tr>
<th>β</th>
<th>L</th>
<th>T</th>
<th>m_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.20</td>
<td>48</td>
<td>96</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>56</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.012, 0.014</td>
</tr>
<tr>
<td>3.25</td>
<td>48</td>
<td>96</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>56</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
</tbody>
</table>
Hadron Spectroscopy on Extended Dataset - Simulation Details

- **Action:** Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- **RHMC algorithm** with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20$ and 3.25, which is in the weak coupling regime
- **Lattices available:** ($\sim 2000 – 4000$ Trajectories each)

<table>
<thead>
<tr>
<th>β</th>
<th>L</th>
<th>T</th>
<th>m_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.20</td>
<td>48</td>
<td>96</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>56</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.012, 0.014</td>
</tr>
<tr>
<td>3.25</td>
<td>48</td>
<td>96</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>56</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
</tbody>
</table>
Hadron Spectroscopy on Extended Dataset - Simulation Details

- **Action**: Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- **RHMC algorithm** with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20$ and 3.25, which is in the weak coupling regime
- **Lattices available**:
 - ($\sim 2000 - 4000$ Trajectories each)

<table>
<thead>
<tr>
<th>β</th>
<th>L</th>
<th>T</th>
<th>m_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.20</td>
<td>48</td>
<td>96</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>56</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.012, 0.014</td>
</tr>
<tr>
<td>3.25</td>
<td>48</td>
<td>96</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>56</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
</tbody>
</table>
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Hadron Spectroscopy on Extended Dataset - Simulation Details

- Action: Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- $\beta \equiv 6/g^2 = 3.20$ and 3.25, which is in the weak coupling regime
- Lattices available: (~2000 – 4000 Trajectories each)

<table>
<thead>
<tr>
<th>β</th>
<th>L</th>
<th>T</th>
<th>m_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.20</td>
<td>48</td>
<td>96</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>56</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.012, 0.014</td>
</tr>
<tr>
<td>3.25</td>
<td>48</td>
<td>96</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>0.002, 0.003, 0.004</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>56</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>0.003, 0.004, 0.005, 0.006, 0.007, 0.008</td>
</tr>
</tbody>
</table>
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

M_{π} determination

\[M_{\pi}^2 = 2B m + p_{M} m^2\]
\[2B = 6.280(60)\]
\[p_{M} = 30.8(8.8)\]
\[\chi^2/\text{dof} = 3.04\]

\[M_{\pi}^2 = 2B m\]
\[2B = 5.363(21)\]
\[\chi^2/\text{dof} = 3.05\]
Hadron Spectroscopy on Extended Dataset - Scale-setting

- F_π determination

\[F_\pi = F + p_m \]
\[F = 0.02422(45) \]
\[p_m = 4.07(10) \]
\[\chi^2/dof = 1.28 \]

\[\beta = 3.20 \]

\[F_\pi = F + p_m \]
\[F = 0.02214(42) \]
\[p_m = 3.22(11) \]
\[\chi^2/dof = 3.71 \]

\[\beta = 3.25 \]
Hadron Spectroscopy on Extended Dataset - Finite Size Scaling

- Finite Size Scaling is under control

- Largest volume data available \((48^3 \times 96 \text{ or } 32^3 \times 64)\) are taken as infinite volume values
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Hadron Spectroscopy on Extended Dataset - Finite Size Scaling

- **Finite Size Scaling is under control**

![Graph showing Finite Size Scaling](image)

- **Largest volume data available $(48^3 \times 96$ or $32^3 \times 64)$ are taken as infinite volume values**

\[
M_q(L) = M_q + c_q g_q(M_q L)
\]

\[
c_q(1\text{-loop}) = M_q^2/64\pi^2 F_q^2\]

\[
M_q = 0.13564(51)
\]

\[
c_q = 0.066(17)
\]

\[
X^2/dof = 1.77
\]

\[
F_q(L) = F_q + c_q g_q(M_q L)
\]

\[
c_q(1\text{-loop}) = -M_q^2/16\pi^2 F_q^2\]

\[
F_q = 0.03658(23)
\]

\[
c_q = -0.021(43)
\]

\[
X^2/dof = 1.39
\]
Hadron Spectroscopy on Extended Dataset - Taste-breaking checks

- $M_{\pi_{sc}}$, $M_{\pi_{i5}}$, $M_{\pi_{ij}}$

Taste-breaking is reduced at larger β
Taste-breaking is reduced at larger β
Hadron Spectroscopy on Extended Dataset - Light 0^{++} ground state as Higgs Impostor

- M_{a_0} and M_{f_0}

- M_{f_0} remains low and difficult to determine
- Mixing with glueball operators may help
- Most-sensitive to topological effects that may not be under full control (more in later slides)
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Hadron Spectroscopy on Extended Dataset - Light 0^{++} ground state as Higgs Impostor

- M_{a_0} and M_{f_0}

- M_{f_0} remains low and difficult to determine
- Mixing with glueball operators may help
- Most-sensitive to topological effects that may not be under full control (more in later slides)
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^++ ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Hadron Spectroscopy on Extended Dataset - Light 0^++ ground state as Higgs Impostor

- M_{a0} and M_{f0}

- M_{f0} remains low and difficult to determine
- Mixing with glueball operators may help
- Most-sensitive to topological effects that may not be under full control (more in later slides)
Hadron Spectroscopy on Extended Dataset - Light 0^{++} ground state as Higgs Impostor

- M_{a_0} and M_{f_0}

- M_{f_0} remains low and difficult to determine
- Mixing with glueball operators may help
- Most-sensitive to topological effects that may not be under full control (more in later slides)
Hadron Spectroscopy on Extended Dataset - Other channels

- M_ρ and M_{α_1}

- Lowest states within reach of LHC
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Imposter
Other channels
Summary
Studies on Topological Effects
Conclusion

Hadron Spectroscopy on Extended Dataset - Other channels

- M_ρ and M_{a_1}

![Graphs showing M_ρ and M_{a_1}](image)

- Lowest states within reach of LHC
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Hadron Spectroscopy on Extended Dataset - Other channels

- Dark Matter candidate: M_N
- Tricky to construct due to symmetric color structure (details in Santanu Mondal’s talk)

Clean signals are observed for the first time.
Hadron Spectroscopy on Extended Dataset - Other channels

- Dark Matter candidate: M_N
- Tricky to construct due to symmetric color structure (details in Santanu Mondal’s talk)

![Graph showing $M_N = c_0 + c_1 m$ with $c_0 = 0.332(13)$, $c_1 = 38.8(2.1)$, and χ^2/dof = 0.506]

- Clean signals are observed for the first time.
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Dark Matter candidate: M_N

Tricky to construct due to symmetric color structure (details in Santanu Mondal’s talk)

- Clean signals are observed for the first time.
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Hadron Spectroscopy on Extended Dataset

Summary:

<table>
<thead>
<tr>
<th>β</th>
<th>3.20</th>
<th>3.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_N</td>
<td>$12.98(68)F = 3.19(17) \text{ TeV}$</td>
<td>-</td>
</tr>
<tr>
<td>M_{a_1}</td>
<td>$9.83(97)F = 2.42(24) \text{ TeV}$</td>
<td>$11.00(28)F = 2.707(68) \text{ TeV}$</td>
</tr>
<tr>
<td>M_{ρ}</td>
<td>$7.98(37)F = 1.964(91) \text{ TeV}$</td>
<td>$7.52(26)F = 1.850(63) \text{ TeV}$</td>
</tr>
<tr>
<td>M_{a_0}</td>
<td>$5.72(26)F = 1.406(63) \text{ TeV}$</td>
<td>$8.16(29)F = 2.01(72) \text{ TeV}$</td>
</tr>
<tr>
<td>M_{f_0}</td>
<td>$\sim 1F$</td>
<td>$3.9(1.5)F = 0.95(36) \text{ TeV}$</td>
</tr>
</tbody>
</table>

- M_{a_0} changes by a lot, probably due to under-estimated errors or topological effects (more on this in coming slides)
- More controls on systematics are needed for M_{f_0} determination
Hadron Spectroscopy on Extended Dataset

- **Summary:**

<table>
<thead>
<tr>
<th>β</th>
<th>3.20</th>
<th>3.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_N</td>
<td>$12.98(68) F = 3.19(17)$ TeV</td>
<td>-</td>
</tr>
<tr>
<td>M_{a_1}</td>
<td>$9.83(97) F = 2.42(24)$ TeV</td>
<td>$11.00(28) F = 2.707(68)$ TeV</td>
</tr>
<tr>
<td>M_ρ</td>
<td>$7.98(37) F = 1.964(91)$ TeV</td>
<td>$7.52(26) F = 1.850(63)$ TeV</td>
</tr>
<tr>
<td>M_{a_0}</td>
<td>$5.72(26) F = 1.406(63)$ TeV</td>
<td>$8.16(29) F = 2.01(72)$ TeV</td>
</tr>
<tr>
<td>M_{f_0}</td>
<td>$\sim 1F$</td>
<td>$3.9(1.5) F = 0.95(36)$ TeV</td>
</tr>
</tbody>
</table>

- M_{a_0} changes by a lot, probably due to under-estimated errors or topological effects (more on this in coming slides)
- More controls on systematics are needed for M_{f_0} determination.
Summary:

<table>
<thead>
<tr>
<th>β</th>
<th>3.20</th>
<th>3.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_N</td>
<td>$12.98(68)F = 3.19(17)$ TeV</td>
<td>-</td>
</tr>
<tr>
<td>M_{a_1}</td>
<td>$9.83(97)F = 2.42(24)$ TeV</td>
<td>$11.00(28)F = 2.707(68)$ TeV</td>
</tr>
<tr>
<td>M_ρ</td>
<td>$7.98(37)F = 1.964(91)$ TeV</td>
<td>$7.52(26)F = 1.850(63)$ TeV</td>
</tr>
<tr>
<td>M_{a_0}</td>
<td>$5.72(26)F = 1.406(63)$ TeV</td>
<td>$8.16(29)F = 2.01(72)$ TeV</td>
</tr>
<tr>
<td>M_{f_0}</td>
<td>$\sim 1F$</td>
<td>$3.9(1.5)F = 0.95(36)$ TeV</td>
</tr>
</tbody>
</table>

- M_{a_0} changes by a lot, probably due to under-estimated errors or topological effects (more on this in coming slides)
- More controls on systematics are needed for M_{f_0} determination
Studies on Topological Effects

- Slow topological tunneling in HMC simulations ⇒ What is the Q-dependence of hadron masses?

- Previous study on M_{f_0} (Fodor et al, PoS (LATTICE 2013) 062)

- No Q-dependence detected… But is it actually there? How about other channels?

- A more careful investigation with more distinct Q-values at larger volume in more channels is required
Studies on Topological Effects

- Slow topological tunneling in HMC simulations ⇒ What is the Q-dependence of hadron masses?

 - Previous study on M_{f_0} (Fodor et al, PoS (LATTICE 2013) 062)

![Graph showing topological charge Q vs trajectory numbers]

- No Q-dependence detected... But is it actually there? How about other channels?

 - A more careful investigation with more distinct Q-values at larger volume in more channels is required
Studies on Topological Effects

- **Slow topological tunneling in HMC simulations** ⇒ **What is the \(Q\)-dependence of hadron masses?**
- **Previous study on** \(M_{f_0}\) (Fodor et al, PoS (LATTICE 2013) 062)

![Graph showing topological charge and trajectories](image)

- **No** \(Q\)-dependence detected... But is it actually there? How about other channels?
- **A more careful investigation with more distinct \(Q\)-values at larger volume in more channels is required**
Studies on Topological Effects

- Slow topological tunneling in HMC simulations ⇒ What is the Q-dependence of hadron masses?
- Previous study on M_{f_0} (Fodor et al, PoS (LATTICE 2013) 062)

No Q-dependence detected... But is it actually there? How about other channels?

A more careful investigation with more distinct Q-values at larger volume in more channels is required

![Graph showing topological tunneling](image-url)
Studies on Topological Effects

- Two separate runs with very different Q values

- About $1 - \sigma$ effect is observed in M_{a_0} and M_{f_0}, less significant in M_{π} and F ⇒ More controls are needed

- Other studies on topological effects are undergoing (more details in Julius Kuti’s talk)
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0^{++} ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

Studies on Topological Effects

- Two separate runs with very different Q values

![Graph](image)

- About $1 - \sigma$ effect is observed in M_{a_0} and M_{f_0}, less significant in M_π and $F \Rightarrow$ More controls are needed
- Other studies on topological effects are undergoing (more details in Julius Kuti’s talk)
Studies on Topological Effects

- Two separate runs with very different Q values

- About $1 - \sigma$ effect is observed in M_{a_0} and M_{f_0}, less significant in M_{π} and $F \Rightarrow$ More controls are needed

- Other studies on topological effects are undergoing (more details in Julius Kuti’s talk)
The dataset has been extended in larger volumes, more fermion masses and more bare couplings.

\(f_0 \) remains light but more efforts are still needed to determine the mass.

A few important quantities have been studied:

- Phenomenologically interesting channels \(M_{\rho}, M_{a_0}, M_{a_1} \) are studied and their masses are within reach of LHC.
- Dark Matter candidate \(M_N \) is studied for the first time (more details in Santanu Mondal’s talk)

Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti’s talk)
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0++ ground state as Higgs Impostor
Other channels
Summary
Studies on Topological Effects
Conclusion

The dataset has been extended in larger volumes, more fermion masses and more bare couplings.

\(f_0 \) remains light but more efforts are still needed to determine the mass.

A few important quantities have been studied:

- Phenomenologically interesting channels \(M_{\rho}, M_{a_0}, M_{a_1} \) are studied and their masses are within reach of LHC.
- Dark Matter candidate \(M_N \) is studied for the first time (more details in Santanu Mondal’s talk)

Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti’s talk)
The dataset has been extended in larger volumes, more fermion masses and more bare couplings.
f_0 remains light but more efforts are still needed to determine the mass.
A few important quantities have been studied:
- Phenomenologically interesting channels M_ρ, M_{a_0}, M_{a_1} are studied and their masses are within reach of LHC.
- Dark Matter candidate M_N is studied for the first time (more details in Santanu Mondal’s talk)
Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti’s talk)
The dataset has been extended in larger volumes, more fermion masses and more bare couplings.

- f_0 remains light but more efforts are still needed to determine the mass.

- A few important quantities have been studied:
 - Phenomenologically interesting channels M_ρ, M_{a_0}, M_{a_1} are studied and their masses are within reach of LHC.
 - Dark Matter candidate M_N is studied for the first time (more details in Santanu Mondal’s talk)

- Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti’s talk)
The dataset has been extended in larger volumes, more fermion masses and more bare couplings.

f_0 remains light but more efforts are still needed to determine the mass.

A few important quantities have been studied:

- Phenomenologically interesting channels M_ρ, M_{a_0}, M_{a_1} are studied and their masses are within reach of LHC.
- Dark Matter candidate M_N is studied for the first time (more details in Santanu Mondal’s talk)

Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti’s talk)
The low mass scalar impostor and the composite Higgs

Chik Him (Ricky) Wong

Outline
Review
Preliminary results
Simulation Details
Scale-setting
Finite Size Scaling
Taste-breaking checks
Light 0++ ground state as Higgs Impostor
Other channels
Summary

Studies on Topological Effects

Conclusion

- The dataset has been extended in larger volumes, more fermion masses and more bare couplings.
- f_0 remains light but more efforts are still needed to determine the mass.
- A few important quantities have been studied:
 - Phenomenologically interesting channels M_ρ, M_{a_0}, M_{a_1} are studied and their masses are within reach of LHC.
 - Dark Matter candidate M_N is studied for the first time (more details in Santanu Mondal’s talk)

- Topological effects seem to play an important role in hadron spectroscopy. More investigations and controls are needed (more details in Julius Kuti’s talk)