Asymptotic Safety on the lattice: The nonlinear O(N) Sigma model

Daniel Körner, Björn Wellegehausen, Andreas Wipf

Friedrich-Schiller-Universität Jena

Lattice 2014

preprint available at arXiv:1402.1851 [hep-lat] submitted to Annals of Physics

RESEARCH TRAINING GROUP QUANTUM AND GRAVITATIONAL FIELDS

Asymptotic Safety

RG approach to QFT

- theory at scale k described by effective average action Γ_k
- upper (ultraviolet) cutoff Λ : $\Gamma_k = S_{mic}$
- use RG flow to integrate out fluctuations until lower cutoff $k = \lambda$
- fundamental theory valid on all scales, limit $\Lambda \to \infty$ and $\lambda \to 0$ exists

Asymptotic Safety

RG approach to QFT

- theory at scale k described by effective average action Γ_k
- upper (ultraviolet) cutoff Λ : $\Gamma_k = S_{mic}$
- use RG flow to integrate out fluctuations until lower cutoff $k = \lambda$
- fundamental theory valid on all scales, limit $\Lambda \to \infty$ and $\lambda \to 0$ exists

Application to Classical Gravity

- unified theory requires quantization of spacetime metric
- at IR cutoff: Einstein-Hilbert action
- perturbative approach leads to severe divergences
- theory not renormalizable in perturbative way

Asymptotic Safety

- Asymptotic Safety Scenario [Weinberg '80] : gravity non-perturbatively renormalizable
- needs nongaussian (ultraviolet) fixed point with finite number of relevant directions to protect UV from unphysical divergences
- asymptotic freedom (QCD): theory approaches gaussian fixed point for $k \to \infty$

Setting the stage

 nontrivial UV fixed point suspected in (*D* > 2) nonlinear sigma models by perturbation theory and functional RG calculations [Codello, Percacci '08]

[Flore, Wipf, Zanusso '12]

O(N) nonlinear Sigma model

$$S=rac{1}{2g^2}\int d^Dx\;\partial_\muec{\phi}\partial^\muec{\phi},\;\; ext{where}\;ec{\phi}^2=1$$

• Flow diagram determinable from the lattice via Monte Carlo Renormalization Group (MCRG) techniques

Setting the stage

 nontrivial UV fixed point suspected in (*D* > 2) nonlinear sigma models by perturbation theory and functional RG calculations [Codello, Percacci '08]

Flore, Wipf, Zanusso '12

O(N) nonlinear Sigma model

$$S=rac{1}{2g^2}\int d^Dx\;\partial_\muec{\phi}\partial^\muec{\phi},\;\; ext{where}\;ec{\phi}^2=1$$

 Flow diagram determinable from the lattice via Monte Carlo Renormalization Group (MCRG) techniques

Our Setup

- local HMC with O(N)-valued fields to generate Markov Chain
- blockspin transformation to integrate out fluctuations
- canonical demon method to determine effective couplings
 [Hasenbusch, Pinn, Wieczerkowski '95]

RG picture on the lattice

- (discrete) lattice momenta cut off by inverse lattice spacing a⁻¹ and inverse linear box size (aN)⁻¹
- lattice simulation equivalent to integrating out all fluctuations inbetween
- correlation functions determined by direct measurement

• Blockspin transformation : $a \rightarrow 2a, N \rightarrow N/2$

RG picture on the lattice

- (discrete) lattice momenta cut off by inverse lattice spacing a⁻¹ and inverse linear box size (aN)⁻¹
- lattice simulation equivalent to integrating out all fluctuations inbetween
- correlation functions determined by direct measurement

• Blockspin transformation : $a \rightarrow 2a, N \rightarrow N/2$

Observables

• (discrete) beta function $ilde{eta}_i = ilde{eta}(g_i) = g_i^{blocked} - g_i$

• (discrete) stability matrix
$$S_{ij} = rac{\partial ilde{eta}}{\partial g}$$

Systematic Errors

- finite volume effects not visible for largest lattices considered (32³)
- discretisation errors small near critical line
- effective action in demon method leads to truncation errors
- half group property of RG transformation R_s (blockspin + demon) violated

 $R_s \circ R_s \neq R_{s^2}$

Systematic Errors

- finite volume effects not visible for largest lattices considered (32³)
- discretisation errors small near critical line
- effective action in demon method leads to truncation errors
- half group property of RG transformation R_s (blockspin + demon) violated

 $R_s \circ R_s \neq R_{s^2}$

Option 1: Add more operators!

 follow derivative expansion ; up to four operators, i.e. all possible operators up to fourth order in the momenta

Systematic Errors

- finite volume effects not visible for largest lattices considered (32³)
- discretisation errors small near critical line
- effective action in demon method leads to truncation errors
- half group property of RG transformation R_s (blockspin + demon) violated

 $R_s \circ R_s \neq R_{s^2}$

Option 1: Add more operators!

 follow derivative expansion ; up to four operators, i.e. all possible operators up to fourth order in the momenta

Option 2: Use improved blockspin transformation!

$$\Phi_{\tilde{x}} \propto P\Big(\expig\{ oldsymbol{C} \cdot \Phi_{ ilde{x}} \sum_{\mathbf{x} \in \mathbf{A}_{\mathbf{x}}} \phi_{\mathbf{x}} ig\}\Big)$$

Hasenfratz, Hasenfratz, Heller, Karsch '84

• parametrize $C = \sum_i c_i g_i$ such that for $g \to \infty$, $C \to \infty$ holds

D=2: Asymptotic Freedom

- lattice beta function does not depend on the lattice size (in this truncation)
- considerable variation w.r.t. the optimization parameter c₀
- crucial implications : artificial fixed points emerge / true fixed points vanish due to truncation

Optimization of the RG transformation I

- MC simulation allows to directly measure lattice correlation functions which are free from truncation errors
- blockspin transformation does not change the IR physics
- idea : simulate the ensemble with truncated couplings
- systematic truncation effects show as differences in the correlation functions of the original and truncated ensemble

Optimization of the RG transformation II

- RG picture: trajectories of the RG flow are attracted by the renormalized trajectory, which connects the fixed points of the RG flow
- idea: location of the renormalized trajectory depends on RG scheme
- optimization equivalent to an RG scheme where the renormalized trajectory is closest to a given truncation

- compare two-point correlation lengths, ignore all higher correlation functions
- significant deviations from $\xi_{64}/\xi_{32} = 2$ for large and small optimization parameter
- choose $c_0^{opt} = 2.8$ which is closest to the expected value

- beta function for $c_0^{opt}=$ 2.8 approaches the known large-N value $ln(2)/6\pi$
- additional zero crossing is an artifact of the truncation
- high-temperature fixed point at zero coupling and low-temperature fixed point at infinite coupling

- trajectories flow from the low-temperature fixed point (LT FP) in the UV to the high-temperature fixed point (HT FP) in the IR
- both operators are IR-irrelevant
- low-temperature FP corresponds to Gaußian FP (asymptotic freedom)

D=3: Asymptotic Safety

 zero crossing at finite coupling with a UV-attractive direction indicates non-Gaußian fixed point

- critical exponent ν of the correlation length extracted from slope of the beta function
- v deviates from expected behaviour for N > 6

 g_0

high temperature FP : spins randomly aligned, absolute disorder

high temperature FP : spins randomly aligned, absolute disorder low temperature FP : spins uniformly aligned, absolute order

high temperature FP : spins randomly aligned, absolute disorder low temperature FP : spins uniformly aligned, absolute order non-Gaussian FP : 1 IR-relevant, 1 IR-irrelevant direction

high temperature FP : spins randomly aligned, absolute disorder low temperature FP : spins uniformly aligned, absolute order non-Gaussian FP : 1 IR-relevant, 1 IR-irrelevant direction critical line : separates symmetry broken and unbroken regime

 g_0

high temperature FP : spins randomly aligned, absolute disorder low temperature FP : spins uniformly aligned, absolute order non-Gaussian FP : 1 IR-relevant, 1 IR-irrelevant direction critical line : separates symmetry broken and unbroken regime renormalized trajectory : attractor for the RG trajectories

- starting from the usual Hamiltonian for the Heisenberg ferromagnet there are three possible IR fixed points of the RG flow
- universality : non-gaussian FP corresponds to Wilson-Fisher FP of the linear O(N) sigma model

IR or UV fixed point?

- Heisenberg ferromagnet is an effective theory that is defined at some finite UV cutoff
- initial goal : theory that is IR- and UV-complete

IR or UV fixed point?

- complete theory "lives" on the renormalized trajectory
- non-gaussian fixed point acts as a UV fixed point with one relevant direction
- asymptotic safety scenario realized (in this truncation ...)

high temperature FP: $\nu \approx -1$

high temperature FP: $\nu \approx -1$ low temperature FP: $\nu \approx 1$

- large-N limit inconclusive (numerical effort grows with N)

only irrelevant coupling is added

• only irrelevant coupling is added

Summary

- MCRG+Demon Method suitable to obtain global flow diagram
- in principle arbitrarily long trajectories on moderate lattices
- systematic errors of truncation reduced by optimization scheme

D=2

• flow diagram shows low-temperature (Gaußian) FP in the UV and high-temperature FP in the IR (asymptotic freedom reproduced)

D=3

- flow diagram reveals two trivial IR fixed points (absolute order and absolute disorder) and one nontrivial UV fixed point (Wilson-Fisher-FP)
- fixed point structure stable against change of truncation
- only one relevant direction \rightarrow asymptotic safety scenario realized

Outlook

applicable to fermionic models (e.g. Thirring model)

 g_0

 g_0

