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L Introduction

Historical remarks

2004 — first experimental observation of graphene (Science 306
(5696): 666-669)

2010 — the Nobel Prize was awarded to Andre Geim and Konstantin
Novoselov
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L Introduction

Graphene: atomic structure

Each carbon atom has 4 valence electrons: 3 of them form o-bonds
and the last remains on m-orbital.
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L Introduction

Why do we need lattice calculations for AA-bilayer
graphene?

Methodological interest:

m We can compare LFT results with the Condensed Matter
Physics predictions

Intermediate step to the lattice models of multilayer graphene
No non-perturbative calculations have been performed yet
Symmetrical energy spectrum = no sign problem

Possibilities to study finite temperature effects

Why not to try?
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Atomic structure and tight-binding Hamiltonian
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L Model

Tight-binding Hamiltonian

In momentum representation:

0 to t‘fk’ 0

peb | o 0 0 tA[| B A
H’ = T 0 o | = toTx ® 1 — t1 ® x|k,

0 t‘fk’ to 0

:3kyxa
where f = 1+2e' 2 cos(kyaf) 7« and &, — Pauli matrices acting

in layer space and sublattice space respectively.
Symmetries of the Hamiltonian:

[6-)(’ I,-\Ilzb]:0:>0-::t1 [7/=X, /:Ilfb]:02>7'::|:]_
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L Energy spectrum

Energy bands without interaction

1
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2
eék) = to—tlkl, =1, 7=-1
3
6(()k) = —to+tlk|, o=-1, 7=
4
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:3kyxa
where fy =1+ 2e’Tcos(kyaT\/§).
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L Energy spectrum

E(k) dispersion relation at low energies

er=0= eéi) and egi) form Fermi arcs with the radius k, = %
Near the Dirac points: € = vg|k|, where ve = %ta ~ % =

k,
K
r M| k,
pe
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LEnergy gap and interaction

G-type AFM ordering

Fermi surfaces are degenerate and have different values of o and
7 = G-type AFM ordering will break both sublattice and interlayer
symmetries and induce energy gap

Electron densities:

14+ An
niar = N2y = MA, = MB| = 5

1—-An
nialp = N2 = Mar = Mgt = 5

Charge conservation: njay + nja; = nigt + nip), =1

AFM condensate: An = njar — noar = nigy — Mg,
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LEnergy gap and interaction

On-site Coulomb interaction

G-type AFM ordering may be formed due to the on-site
electron-electron interaction?:

2 2
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!A.L. Rakhmanov, A.V. Rozhkov, A.O. Sboychakov and F. Nori, PRL 109,
206801 (2012)
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LEnergy gap and interaction

Our model: realistic inter-electron Coulomb potentials

We employ long-range Coulomb interaction and take into account
screening by o-orbitals within one layer?:
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2M. V. Ulybyshev, P. V. Buividovich, M. . Katsnelson and M. 1. Polikarpov,
Phys. Rev. Lett. 111, 056801 (2013)
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L Lattice model

L Vacuum redifinition

Creation and annihilation operators

Vacuum state: all spins are down.
It is convenient to introduce electrons:

3;,,' = 3’;,@
and holes:
ax.iy layer 1, sublattice A
~ ) —ax,, layerl, sublattice B

—ax.i, layer 2, sublattice A
ax,i|, layer 2, sublattice B

Ay — 5t 5 at 1 —5tg At
Charge operator: gx; = ay ,ax;+ + ay, x| — 1 = ay.ax, — by bx.
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L Lattice model

L Hamiltonian

Tight-binding Hamiltionain with interaction

Hamiltonian can now be formulated in terms of electrons and holes:

/:I = /:Itb + /:Istag + /:Iint

I:Itb = —tz Z aXay+b+by —toz aXaX2+b bx2)+hc
i=1 <X;,Yi>
I:IStag- = mZZ[(_]‘)H_l(SXAYA + (_1)i6XBYB:| (é)tiﬁyi + B;,BY,)
i=1 X,Y
~ 1 R T R o PN
Hine. = 5 Z Z ax, Vxy @y, where §x, = af ax, — by bx;
ij=1X,Y

Partition function: Z = Tr (e*BH) ., B= %
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L Lattice model

L Ppartition function

Partition function calculation

Tr (e—/BI:’) = Tr <e_AT(’:’tb+’:/stag-+F"int4))Nt =

= Tr (e*AT(F’thr/:/stag.)e*AT’://nt. e*AT(F’tb+f:lstag.)e*AT/:/int. . ) + O(A7-2)

Standard method — inserting Grassmannian coherent states:

an,( X,)TJFZ X;i(g)ti)‘r

n"X") = ex X 0)
2 XxiXki 277 i
/:/DnDanDxe TR Ty (X7
> axAxyay E Tix(eM)xvny
(n] eXv ') = e

Important feature: now we have 2/V; time layers, only even time
layers are physical.
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L Lattice model

L Ppartition function

Partition function

It is convenient to perform Hubbard-Stratonovich transformation?:

—&7 3" gx Vxvay —5a= 3 ex Ve oy —i 3 oxdx
e Xy = [ Dye Xy X

Finally we arrive at the following expression:
Z = / DpDFDyDYDye ™Mn—XM x—z270" V¢
-1

= / Dpdet(MTM)e 22" V¢

Fermionic determinant is positive!
An observable: (O) = 1 Tr ((A)e*fBH>

?PoS LAT2011, 056 (2012), ArXiv:1204.5424
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L Lattice model
L AFM condensate

Observable: AFM condensate

Electron density operators:

Piar = Z 8% it AXa it
subl XeA
hig, = Z axB,,ﬁXB,/i
subl XeB
An = (Mar) — (Mar) = (M) — (MBy)

In terms of inverse Dirac operator:

1 . .
Any= 3" E:( iy, — M )
< > NT Nsubl. - X2X2 X1X1

1 A~ N
—NTNMZ<Z< §11x1—M§21x2)>

T
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L Numerical results

AFM condensate and on-site Coulomb interaction

T=0.19 eV, 12°x35 lattice, At=0.15 eV’
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L Numerical results

AFM condensate and on-site Coulomb interaction

T=0.19 eV, 12%x35 lattice, A1=0.15 eV’
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Our result: (An) = 0 nearly at V,, = 8.9 eV.

MF result: An ~ 0.5 at Vi = 8.9 &V (PRL 109, 206801 (2012)).
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L Numerical results

AFM condensate and temperature

Taking into account the dielectic substrate: Vjj — Vjj /e, except Vi

£=3.0, At=0.15 eV’
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L Conclusions

Conclusions

m Original hexagonal lattice model for AA-bilayer graphene was
created

m Long-range Coulomb potentials with screening were taken into
account

m Disagreement with the mean-field predictions
m GPUs were used to accelerate calculations

m Computing resources: ITEP Supercomputer,
"Lomonosov" Supercomputer at MSU
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L Final slide

Thank you for attention

The end
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L Backup slides

Fermionic action

577 - Z Z Z |:77X/ 5U5XY77YJ +77X,T+1(5,J(5X 7727_'_1

7=0 i,j=0X,Y
*2T 2r+1 *27+1 i T2 org2]
- NXi (1 + ATAXY)UYJ — T 0y0xy expPx 77 Yj ] =

2N —

= Z ZZU xvﬂ?yﬁ

' 7=0ij=0X,Y

where A%, is a real matrix and is defined as follows:

2 2
AI)J<Y = tdjj | dxea Z OY X+pp T OveB Z OX,Y—py | +
b=0 b=0

+todxy (diodj1 + di1djo) — mdj; ((—1)“rl x,vs + (—1) 5XBYB>
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