Thermodynamics of Gauge Theory from Gradient Flow

For FlowQCD Collaboration

Thermodynamics of Gauge Theory from Gradient Flow

For FlowQCD Collaboration

Poincare symmetry

Poincare symmetry

Poincare symmetry

energy T_{03} T_{02} T_{01} T_{00} T_{13} T_{12} T_{1} T_{10} T_{23} T_{22} T_{21} T_{20} T_{32} T_{31} T_{30} pressure stress Einstein Equation $G_{\mu\nu} + \Lambda g_{\mu\nu} \approx \kappa T_{\mu\nu}$ Hydrodynamic Eq. $\partial_\mu T_{\mu
u} \equiv 0$

$\mathcal{T}_{\mu u}$: nontrivial observable on the lattice

Definition of the operator is nontrivial because of the explicit breaking of Lorentz symmetry

ex:
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$
$$F_{\mu\nu} =$$

2 Its measurement is extremely noisy due to high dimensionality and etc.

Measurement of Thermodynamics using gradient flow

Masakiyo Kitazawa (Osaka U.)

for FlowQCD Collaboration Asakawa, Hatsuda, Iritani, Itou, MK, Suzuki

FlowQCD, arXiv:1312.7492[hep-lat]; to appear in PRD

LATTICE2014, 28 June 2014, New York

Flow QCD Collaboration

Flow QCD Collaboration

from **Gradient flow** $\partial_t B_\mu = D_\nu G_{\nu\mu}$

Flow QCD Collaboration

from Hydrodynamic Gradient flow flow $\partial_t B_\mu = D_\nu G_{\nu\mu}$ $\partial_{\mu}T_{\mu\nu} = 0$

Thermodynamics

direct measurement of expectation values $\langle T_{00} \rangle, \langle T_{ii} \rangle$

Fluctuations and Correlations

to

viscosity, specific heat, ... $c_V \sim \langle \delta T_{00}^2 \rangle$ $\eta = \langle T_{12}; T_{12} \rangle$

Gradient Flow

YM Gradient Flow

Luescher, 2010

A. Ramos, plenary, Friday

 $\partial_t A_\mu(t, x) =$

 $\partial S_{\rm YM}$ ∂A_{μ}

 $A_{\mu}(0,x) = A_{\mu}(x)$

t: "flow time" dim:[length²]

YM Gradient Flow

Luescher, 2010

A. Ramos, plenary, Friday

$$\partial_t A_\mu(t,x)$$
 :

$$-rac{\partial S_{
m YM}}{\partial A_{\mu}}$$

$$A_{\mu}(0,x) = A_{\mu}(x)$$

t: "flow time" dim:[length²]

□ transform gauge field like diffusion equation $\frac{\partial_t A_{\mu}}{\partial_t A_{\mu}} = D_{\nu} G_{\mu\nu} = \frac{\partial_{\nu} \partial_{\nu} A_{\mu}}{\partial_{\nu} A_{\mu}} + \cdots$ □ diffusion length $d \sim \sqrt{8t}$

This is NOT the standard cooling/smearing
 All composite operators at t>0 are UV finite Luescher,Weisz,2011

Applications of Gradient Flow

A. Ramos, plenary, Friday

- \bigcirc scale setting
- 2 running coupling
- (3) topology

(4) operator relation

5 autocorrelation, etc.

Small Flow Time Expansion of Operators and EMT

Operator Relation

Luescher, Weisz, 2011

 $|\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum c_i(t) \mathcal{O}_i^R(x)|$

an operator at t>0

remormalized operators of original theory

Operator Relati

Luescher, Weisz, 2011

 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum c_i(t) \mathcal{O}_i^R(x)$

an operator at t>0

remormalized operators of original theory

T,

 $ilde{\mathcal{O}}(t,x)$

Operator Relati

Luescher, Weisz, 2011

an operator at t>0

remormalized operators of original theory

T

 $ilde{\mathcal{O}}(t,x)$

 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum c_i(t) \mathcal{O}_i^R(x)$

Constructing EMT

Suzuki, 2013 DelDebbio,Patella,Rago,2013

 $\tilde{\mathcal{O}}(t,x)$

gauge-invariant dimension 4 operators

$$\begin{aligned} U_{\mu\nu}(t,x) &= G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)\\ E(t,x) &= \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \end{aligned}$$

Constructing EMT 2

$\begin{aligned} U_{\mu\nu}(t,x) &= \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t) \\ E(t,x) &= \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t) \end{aligned}$

Suzuki coeffs.
$$\begin{cases} \alpha_U(t) = g^2 \left[1 + 2b_0 s_1 g^2 + O(g^4) \right] \\ \alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 s_2 g^2 + O(g^4) \right] \\ s_1 = 0.03296 \dots \\ s_2 = 0.19783 \dots \end{cases}$$

See also, Patella, Parallel7E, Thu.

Suzuki, 2013

Constructing EMT 2

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$

$$\tilde{\mathcal{O}}(t,x)$$
 t

Suzuki, 2013

Suzuki coeffs.
$$\begin{cases} \alpha_U(t) = g^2 \left[1 + 2b_0 s_1 g^2 + O(g^4) \right] \\ \alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 s_2 g^2 + O(g^4) \right] \end{cases} \qquad g = g(1/\sqrt{8t}) \\ s_1 = 0.03296 \\ s_2 = 0.19783 \end{cases}$$

Remormalized EMT

$$T^R_{\mu\nu}(x) = \lim_{t \to 0} \left[\frac{1}{\alpha_U(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t,x)_{\text{subt.}} \right]$$

Numerical Analysis on the Lattice

Gradient Flow Method

Gradient Flow Method

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}} \qquad T^R_{\mu\nu} = \lim_{t \to 0} \tilde{T}_{\mu\nu}(t)$$

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}} \qquad T^R_{\mu\nu} = \lim_{t \to 0} \tilde{T}_{\mu\nu}(t)$$

 \Box t \rightarrow 0 limit with keeping t>>a²

Numerical Simulation

SU(3) YM theoryWilson gauge action

Simulation 1

(arXiv:1312.7492)

- lattice size: $32^3 x N_t$
- Nt = 6, 8, 10
- $\beta = 5.89 6.56$
- ~300 configurations

Simulation 2

(new, preliminary)

- lattice size: $64^3 \times N_t$
- Nt = 10, 12, 14, 16
- $\beta = 6.4 7.4$
- ~2000 configurations

using BlueGeneQ @ KEK efficiency ~40%

using SX8 @ RCNP SR16000 @ KEK

Numerical Simulation

SU(3) YM theoryWilson gauge action

Simulation 1

(arXiv:1312.7492)

- lattice size: $32^3 x N_t$
- Nt = 6, 8, 10
- $\beta = 5.89 6.56$
- ~300 configurations

using SX8 @ RCNP SR16000 @ KEK

twice finer lattice! Simulation 2

(new, preliminary)

- lattice size: $64^3 \times N_t$
- Nt = 10, 12, 14, 16
- $\beta = 6.4 7.4$
- ~2000 configurations

using BlueGeneQ @ KEK efficiency ~40%

ϵ -3p at T=1.65T_c

 $\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$

$$T^R_{\mu\nu} = \lim_{t \to 0} \tilde{T}_{\mu\nu}(t)$$

Nt=**6**,8,10 ~300 confs.

the range of t where the EMT formula is successfully used!

ϵ -3p at T=1.65T $\underline{T^R_{\mu\nu}} = \lim_{t \to 0} T_{\mu\nu}(t)$ $\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$ t = 0 $\sqrt{8t} = 2a$ over 2a > sqrt(8t)smeared 2.5 for $N\tau = 10 \rightarrow$ for $N\tau = 8 \rightarrow$ $L/(4c^{-3})$ 1/T $\sqrt{2t}$ for $N\tau = 6 \rightarrow$ ••• beta=6.20 Nτ=6 Emergent plat _au! 0.5 beta=6.40 Nτ=8 → beta=6.56 Nτ=10 $2a \lesssim \sqrt{8t} \lesssim 0.4T^{-1}$ 0 0.1 0.2 0.3 0.4 0.5 0 <u>√8t</u> T

Nt=<mark>6,8,</mark>10

~300 confs.

the range of t where the EMT formula is successfully used!

Entropy Density at T=1.65Tc

Emergent plateau! $2a \lesssim \sqrt{8t} \lesssim 0.4T^{-1}$

Nt=**6**,**8**,10 ~300 confs.

Direct measurement of e+p on a given T! NO integral / NO vacuum subtraction

Continuum Limit

32³xNt Nt = 6, 8, 10 T/Tc=0.99, 1.24, 1.65

Continuum Limit

8tT

Numerical Simulation

SU(3) YM theoryWilson gauge action

Simulation 1

(arXiv:1312.7492)

- lattice size: $32^3 x N_t$
- Nt = 6, 8, 10
- $\beta = 5.89 6.56$
- ~300 configurations

using SX8 @ RCNP SR16000 @ KEK

twice finer lattice! Simulation 2

(new, preliminary)

- lattice size: $64^3 \times N_t$
- Nt = 10, 12, 14, 16
- $\beta = 6.4 7.4$
- ~2000 configurations

using BlueGeneQ @ KEK efficiency ~40%

Entropy Density on Finer Lattices

T = 2.31Tc 64³xNt Nt = 10, 12, 14, 16 2000 confs.

The wider plateau on the finer lattices
 Plateau may have a nonzero slope

0.5

Continuum Extrapolation

- T=2.31Tc
- 2000 confs
- Nt = 10 ~ 16

Continuum extrapolation is stable

Summary

Summary

EMT formula from gradient flow $T^{R}_{\mu\nu}(x) = \lim_{t \to 0} \left[\frac{1}{\alpha_{U}(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_{E}(t)} E(t,x)_{\text{subt.}} \right]$

This formula can successfully define and calculate the EMT on the lattice

This operator provides us with novel approaches to measure various observables on the lattice!

This method is direct, intuitive and less noisy

Other observables full QCD Makino,Suzuki,2014 non-pert. improvement Patella 7E(Thu)

O(a) improvement Nogradi, 7E(Thu); Sint, 7E(Thu)

Monahan, 7E(Thu)

and etc.

One More Thing...

One More Thing...

Fluctuations and Correlations

viscosity, specific heat, ... $c_V \sim \langle \delta T_{00}^2 \rangle$ $\eta = \langle T_{12}; T_{12} \rangle$

Energy Correlation Function

 $\langle T_{00}(\tau)T_{00}(0)\rangle$

T=2.31Tc b=7.2, Nt=16 2000 confs p=0 correlator

Energy Correlation Function

 $\langle T_{00}(\tau)T_{00}(0)\rangle$

T=2.31Tc b=7.2, Nt=16 2000 confs p=0 correlator

 $\Box \tau \text{ independent const.}$ $\rightarrow \text{ energy conservation}$

Energy Correlation Function

 $\langle T_{00}(\tau)T_{00}(0)\rangle$

T=2.31Tc b=7.2, Nt=16 2000 confs p=0 correlator

 $\neg \tau \text{ independent const.}$ $\rightarrow \text{ energy conservation}$

• specific heat $c_V = \frac{\langle \delta E^2 \rangle}{VT^2}$

 \rightarrow Novel approach to measure specific heat!

Keep your attention to this new **flow**

just like...

Keep your attention to this new **flow**

Thank you for your attention!