A Method to Calculate Conserved Currents and Fermionic Force for the Lanczos Approximation to the Overlap Dirac Operator

Matthias Puhr, Pavel Buividovich

Alexander von Humboldt
Stiftung/Foundation

Motivation

- Derivative of lattice Dirac operator
- Fermionic force in HMC
- Conserved Currents
- Overlap Dirac operator:

$$
\mathrm{D}_{\mathrm{ov}}=\frac{1}{a}\left(\mathbb{1}+\gamma_{5} \operatorname{sgn}\left[\gamma_{5} \mathrm{D}_{\mathrm{W}}\right]\right)
$$

- Numerically challenging
- Polynomial/partial fraction approximation
- Krylov subspace methods (finite μ)

Motivation

- Study anomalous transport in dense QCD
- Overlap Dirac operator at finite chemical potential ${ }^{\text {a }}$

$$
\gamma_{5} \mathrm{D}_{\mathrm{ov}}(\mu) \gamma_{5}=\mathrm{D}_{\mathrm{ov}}(-\mu)
$$

- Conserved currents \leftrightarrow derivatives over (background) gauge fields:

$$
j_{\mu}^{V}(x)=\bar{\psi} \frac{\partial \mathrm{D}_{\mathrm{ov}}}{\partial \theta_{\mu}(x)} \psi \quad \ldots \quad \theta_{\mu} \text { background g.f. }
$$

- Compute approximation to sign function and its derivative for large matrices

[^0]
Matrix Sign Function

- Sign function for complex numbers: $\operatorname{sgn}(z)=\frac{z}{\sqrt{z^{2}}}=\operatorname{sgn}(\Re(z))$
- Matrix sign function:
- Spectral form: (λ_{i} eigenvalues of \mathbf{A})

$$
\operatorname{sgn}(\mathbf{A})=\mathbf{U} \operatorname{sgn}(\boldsymbol{\Lambda}) \mathbf{U}^{-1}, \quad \operatorname{sgn}(\boldsymbol{\Lambda}):=\operatorname{diag}\left(\operatorname{sgn}\left(\lambda_{1}\right), \ldots, \operatorname{sgn}\left(\lambda_{n}\right)\right)
$$

- Roberts iteration:

$$
\mathbf{X}_{k+1}:=\frac{1}{2}\left(\mathbf{X}_{k}+\mathbf{X}_{k}^{-1}\right), \quad \mathbf{X}_{0}=\mathbf{A}
$$

(Newton's method for $\mathbf{X}^{2}-\mathbf{1}=\mathbf{0}$)

- Both methods numerically very expensive!

Two-sided Lanczos algorithm

- Compute approximation to $\vec{y}=f(\mathbf{A}) \vec{x}, \quad \mathbf{A} \in \mathbb{C}^{n \times n}$
- Krylov subspace method: $\mathcal{K}_{k}(\mathbf{A}, \vec{x}):=\operatorname{span}\left(\vec{x}, \mathbf{A} \vec{x}, \mathbf{A}^{2} \vec{x}, \ldots, \mathbf{A}^{k-1} \vec{x}\right)$
- Approximate $f(\mathbf{A})$ by a polynomial of degree $k-1$
- Information about \vec{x} taken into account
- Construct (biorthonormal) matrices \mathbf{V}_{k} and $\mathbf{W}_{k} \in \mathbb{C}^{n \times k}$ such that

$$
\mathbf{A}=\mathbf{V}_{k} \mathbf{T}_{k} \mathbf{W}_{k}^{\dagger}, \quad \mathbf{T}_{k} \in \mathbb{C}^{k \times k} \text { tridiagonal }
$$

- Compute

$$
\vec{y} \approx \mathbf{V}_{k} f\left(\mathbf{T}_{k}\right) \mathbf{W}_{k}^{\dagger} \vec{x}
$$

function LANCZOS($\mathbf{A}, \vec{x}, k, f)$

$$
\begin{aligned}
& \vec{v}_{1} \leftarrow \vec{x} /\|\vec{x}\| \\
& \vec{w}_{1} \leftarrow \vec{x} /\|\vec{x}\| \\
& \text { for } i \leftarrow 1 \text { to } k-1 \text { do } \\
& \quad \mathbf{T}_{i i} \leftarrow \vec{w}_{i}^{\dagger} \mathbf{A} \vec{v}_{i} \\
& \quad \vec{v}_{i+1} \leftarrow\left(\mathbf{A}-\mathbf{T}_{i i} \vec{v}_{i}\right. \\
& \quad \vec{w}_{i+1} \leftarrow\left(\mathbf{A}^{\dagger}-\mathbf{T}_{i i}^{*}\right) \vec{w}_{i}
\end{aligned}
$$

$$
\text { if } i>1 \text { then }
$$

$$
\vec{v}_{i+1} \leftarrow \vec{v}_{i+1}-\mathbf{T}_{(i-1) i} \vec{v}_{i-1}
$$

end if

$$
\vec{w}_{i+1} \leftarrow \vec{w}_{i+1}-\mathbf{T}_{i(i-1)}^{*} \vec{w}_{i-1}
$$

$$
\mathbf{T}_{(i+1) i} \leftarrow\left\|\vec{v}_{i+1}\right\|
$$

$$
\mathbf{T}_{i(i+1)} \leftarrow \vec{w}_{i+1}^{\dagger} \vec{v}_{i+1}
$$

$$
\mathbf{T}_{i(i+1)} \leftarrow \mathbf{T}_{i(i+1)} / \mathbf{T}_{(i+1) i}
$$

$$
\vec{v}_{i+1} \leftarrow \vec{v}_{i+1} / \mathbf{T}_{(i+1) i}
$$

$$
\vec{w}_{i+1} \leftarrow \vec{w}_{i+1} / \mathbf{T}_{i(i+1)}^{*}
$$

end for
$\mathbf{T}_{k k} \leftarrow \vec{w}_{k}^{\dagger} \mathbf{A} \vec{v}_{k}$

- A only in matrix-vector multiplication
- Approximation depends on \vec{x}
- Compute f only for $\mathbf{T} \in \mathbb{C}^{k \times k}$
- Since $\vec{w}_{1}=\vec{x} /\|\vec{x}\|$:

$$
\mathbf{W}^{\dagger} \vec{x}=\hat{e}_{1}
$$

- Operations:
$\mathcal{O}(n k)+\mathcal{O}\left(k^{3}\right)$
return $\|\vec{x}\| \mathbf{V} f(\mathbf{T}) \hat{e}_{1}$
end function

Lanczos

Derivative with AD

Derivative with AD

- Large errors even for small matrix sizes
- Lanczos AD numerically unstable

A hint from A. Frommer:

Theorem (R. Mathias ${ }^{\text {b }}$)

Let $\mathbf{A}(t) \in \mathbb{C}^{n \times n}$ be differentiable at $t=0$ and assume that the spectrum of $\mathbf{A}(t)$ is containded in an open subset $\mathcal{D} \subset \mathbb{C}$ for all t in some neighbourhood of 0 . Let f be $2 n-1$ times continuously differentiable on \mathcal{D}. We then have:

$$
f\left(\left[\begin{array}{cc}
\mathbf{A}(0) & \dot{\mathbf{A}}(0) \\
0 & \mathbf{A}(0)
\end{array}\right]\right) \equiv\left[\begin{array}{cc}
f(\mathbf{A}(0)) & \left.\frac{d}{d t}\right|_{t=0} f(\mathbf{A}(t)) \\
0 & f(\mathbf{A}(0))
\end{array}\right]
$$

[^1]A hint from A. Frommer:

Theorem (R. Mathias ${ }^{\text {b }}$)

Let $\mathbf{A}(t) \in \mathbb{C}^{n \times n}$ be differentiable at $t=0$ and assume that the spectrum of $\mathbf{A}(t)$ is containded in an open subset $\mathcal{D} \subset \mathbb{C}$ for all t in some neighbourhood of 0 . Let f be $2 n-1$ times continuously differentiable on \mathcal{D}. We then have:

$$
f\left(\left[\begin{array}{cc}
\mathbf{A}(0) & \dot{\mathbf{A}}(0) \\
0 & \mathbf{A}(0)
\end{array}\right]\right) \equiv\left[\begin{array}{cc}
f(\mathbf{A}(0)) & \left.\frac{d}{d t}\right|_{t=0} f(\mathbf{A}(t)) \\
0 & f(\mathbf{A}(0))
\end{array}\right]
$$

We can compute the derivative of $f(\mathbf{A})$ without knowing $f^{\prime}(\mathbf{A})$!

[^2]For polynomials
Let $p_{n}(\overline{\mathbf{A}})=\overline{\mathbf{A}}^{n}$
$n=2$:

$$
p_{2}(\overline{\mathbf{A}})=\left[\begin{array}{cc}
\mathbf{A} & \dot{\mathbf{A}} \\
0 & \mathbf{A}
\end{array}\right]^{2}=\left[\begin{array}{cc}
\mathbf{A}^{2} & \mathbf{A} \dot{\mathbf{A}}+\dot{\mathbf{A}} \mathbf{A} \\
0 & \mathbf{A}^{2}
\end{array}\right]=\left[\begin{array}{cc}
p_{2}(\mathbf{A}) & \dot{p}_{2}(\mathbf{A}) \\
0 & p_{2}(\mathbf{A})
\end{array}\right]
$$

$n \rightarrow n+1$:

$$
p_{n+1}(\overline{\mathbf{A}})=\left[\begin{array}{cc}
p_{n}(\mathbf{A}) & \dot{p}_{n}(\mathbf{A}) \\
0 & p_{n}(\mathbf{A})
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A} & \dot{\mathbf{A}} \\
0 & \mathbf{A}
\end{array}\right]=\left[\begin{array}{cc}
p_{n+1}(\mathbf{A}) & \dot{p}_{n+1}(\mathbf{A}) \\
0 & p_{n+1}(\mathbf{A})
\end{array}\right]
$$

General proof

Let $\varepsilon \neq 0$ and $\mathbf{U}=\left[\begin{array}{rr}\mathbb{1} & \varepsilon^{-1} \mathbb{1} \\ 0 & \mathbb{1}\end{array}\right]$.
Since $f\left(\mathbf{X A X}^{-1}\right)=\mathbf{X} f(\mathbf{A}) \mathbf{X}^{-1}$ we get:

$$
\begin{aligned}
f\left(\left[\begin{array}{cc}
\mathbf{A}(0) & \frac{\mathbf{A}(\varepsilon)-\mathbf{A}(0)}{\varepsilon} \\
0 & \mathbf{A}(\varepsilon)
\end{array}\right]\right) & =\mathbf{U} f\left(\mathbf{U}^{-1}\left[\begin{array}{cc}
\mathbf{A}(0) & \frac{\mathbf{A}(\varepsilon)-\mathbf{A}(0)}{\varepsilon} \\
0 & \mathbf{A}(\varepsilon)
\end{array}\right] \mathbf{U}\right) \mathbf{U}^{-1} \\
& =\mathbf{U} f\left(\left[\begin{array}{cc}
\mathbf{A}(0) & 0 \\
0 & \mathbf{A}(\varepsilon)
\end{array}\right]\right) \mathbf{U}^{-1} \\
& =\mathbf{U}\left[\begin{array}{cc}
f(\mathbf{A}(0)) & 0 \\
0 & f(\mathbf{A}(\varepsilon))
\end{array}\right] \mathbf{U}^{-1} \\
& =\left[\begin{array}{cc}
f(\mathbf{A}(0)) & \frac{f(\mathbf{A}(\varepsilon))-f(\mathbf{A}(0))}{\varepsilon} \\
0 & f(\mathbf{A}(\varepsilon))
\end{array}\right]
\end{aligned}
$$

Take $\lim _{\varepsilon \rightarrow 0}$ on both sides.

- Useful for numerical calculations?
- Advantage:
- Compute derivative with Lanczos algorithm:

$$
\operatorname{sign}\left(\left[\begin{array}{cc}
\mathbf{A} & \dot{\mathbf{A}} \\
0 & \mathbf{A}
\end{array}\right]\right)\binom{0}{\vec{x}}=\binom{\frac{d}{d t} \operatorname{sign}(\mathbf{A}) \vec{x}}{\operatorname{sign}(\mathbf{A}) \vec{x}}
$$

- Disadvantage:
- Size of linear space doubles
- Convergence of Lanczos \rightarrow spectrum of $\overline{\mathbf{A}}:=\left[\begin{array}{cc}\mathbf{A} & \dot{\mathbf{A}} \\ 0 & \mathbf{A}\end{array}\right]$?
- Useful for numerical calculations?
- Advantage:
- Compute derivative with Lanczos algorithm:

$$
\operatorname{sign}\left(\left[\begin{array}{cc}
\mathbf{A} & \dot{\mathbf{A}} \\
0 & \mathbf{A}
\end{array}\right]\right)\binom{0}{\vec{x}}=\binom{\frac{d}{d t} \operatorname{sign}(\mathbf{A}) \vec{x}}{\operatorname{sign}(\mathbf{A}) \vec{x}}
$$

- Disadvantage:
- Size of linear space doubles
- Convergence of Lanczos \rightarrow spectrum of $\overline{\mathbf{A}}:=\left[\begin{array}{cc}\mathbf{A} & \dot{\mathbf{A}} \\ 0 & \mathbf{A}\end{array}\right]$?

Properties of $\overline{\mathbf{A}}$

- $\operatorname{det} \overline{\mathbf{A}}=(\operatorname{det} \mathbf{A})^{2}$
- λ eigenvalue of $\overline{\mathbf{A}} \Leftrightarrow \lambda$ eigenvalue of A
- $\vec{x}:=\binom{\vec{x}_{1}}{\vec{x}_{2}}$ eigenvector of $\overline{\mathbf{A}}$ to eigenvalue λ, then:
$\vec{x}_{2} \equiv 0$ and \vec{x}_{1} eigenvector of \mathbf{A} to eigenvalue λ
or
\vec{x}_{2} eigenvector of \mathbf{A} to eigenvalue λ and $\vec{x}_{1}=\frac{\partial}{\partial t} \vec{x}_{2}$

Derivative with Mathias identity

Derivative of the Overlap operator

- Lattice size $6 x 6^{3}$
- SU(3) configurations ${ }^{\text {c }}$ with improved action
- $\beta=5.95, \rho=1.4$
- No deflation (yet)
- Nested Lanczos algorithm ${ }^{\text {d }} \rightarrow$ inner Krylov size l fixed
- Results for

$$
\operatorname{sgn}\left(\gamma_{5} D_{W}\right) \text { and } \frac{\partial}{\partial \theta_{\mu}(x)} \operatorname{sgn}\left(\gamma_{5} D_{W}\right)
$$

[^3]$$
6 \times 6^{3} \text { Lattice, } \mu=0
$$

$$
6 \times 6^{3} \text { Lattice, } \mu=0.1
$$

Summary and Outlook

- Summary
- A method to compute derivatives of the Overlap operator
- Test on small lattices
- First results are very promising
- Outlook
- Implement deflation
- Generalization to higher derivatives
- Application to physical problems

[^0]: $\mathrm{a}_{\text {J. Bloch and T. Wettig, Phys.Rev.Lett.97:012003,2006 }}$

[^1]: ${ }^{\text {b }}$ R. Mathias, SIAM J. Matrix Anal. Appl., 17(3):610-620,1996

[^2]: ${ }^{\text {b }}$ R. Mathias, SIAM J. Matrix Anal. Appl., 17(3):610-620,1996

[^3]: ${ }^{\text {C Provided by Oleg Kochetkov }}$
 d J. Bloch and S. Heybrock, Comput.Phys.Commun.182:878-889,2011

