3-particle quantization condition: an update

Steve Sharpe University of Washington

Based on work in progress with Max Hansen

Outline

- Overview \& motivation
- Background
- Corrections to last year's result
- Sources of corrections
- Future outlook

The fundamental issue

- Lattice QCD can calculate energy levels of multipleparticle systems in a box
- How are these related to scattering amplitudes?

The frontier

- Two-particle quantization condition well understood
- Only partial steps taken for three particles [Polejeeva \& Rusetsky, 20I2] [Briceño \& Davoudi, 2012]

Motivations

- Resonances with 3-particle decays

$$
\omega(782) \rightarrow \pi \pi \pi \quad K^{*} \longrightarrow K \pi \pi \quad N(1440) \rightarrow N \pi \pi
$$

- 3-body interactions

$$
\pi \pi \pi \rightarrow \pi \pi \pi \quad \quad N N N \rightarrow N N N
$$

- Weak decays to 3 (or more) particles

$$
K \rightarrow \pi \pi \pi \quad D \rightarrow \underset{\substack{\pi \pi \\ \text { (couple to } \\ \pi \pi \pi \pi)}}{ } \quad D \rightarrow K \bar{K}
$$

Background

2-particle quant. condition

- For given \mathbf{P}, adjust total energy E until:

$$
\operatorname{det}\left(F^{-1}+i \mathcal{M}\right)=0
$$

Form of result given by [Kim, Sachrajda \& SRS] ; equivalent to earlier results of [Lüscher; Rummukainen \& Gottlieb]

- Entries are infinite dimensional matrices with indices [2-particle CM angular momentum:, m]
- \mathcal{M} is on-shell $2 \rightarrow 2$ scattering amplitude
- F is kinematical, finite-volume factor (related to Lüscher's zeta-function)

3-particle indices

["spectator" momentum: $\mathbf{k}=2 \pi \mathbf{n} / \mathrm{L}$] x

[2-particle CM angular momentum: I,m]

Total energy-momentum

$$
\text { is }(E, P)
$$

- For large \mathbf{k} other two particles are below threshold; must include by analytic continuation

Theory we consider

- Relativistic field theory with single scalar field of mass m
- All vertices with an even number of legs
\mathbb{Z}_{2} symmetry

(For pions in QCD this is G-parity)

Last year

3-particle quant. condition

- For given \mathbf{P}, adjust total energy E until:

$$
\begin{gathered}
\operatorname{det}\left[F_{\text {three }}^{-1}+i \mathcal{M}_{d f, 3 \rightarrow 3}\right]=0 \\
F_{\text {three }} \equiv \frac{1}{2 \omega L^{3}}\left[(2 / 3) i F-\frac{1}{[i F]^{-1}-[1-i \mathcal{M i G}]^{-1} i \mathcal{M}}\right]
\end{gathered}
$$

- Entries are infinite dim. matrices with "indices"
["spectator" momentum: $\mathbf{k}=2 \pi \mathbf{n} / \mathrm{L}$] \times [2-particle CM angular momentum: $1, m$]
- $\mathcal{M}=\mathcal{M}_{2 \rightarrow 2}$ and $\mathcal{M}_{\mathrm{df}, 3 \rightarrow 3}$ are on-shell amplitudes (analytically continued if below threshold)
- F and G are kinematical, finite-volume factors

Changes since last year

$$
\begin{gathered}
\text { Corrected quant. condition } \\
\qquad \begin{array}{c}
\operatorname{det}\left[F_{\text {three }}^{-1}+i \mathcal{M}_{d f, 3 \rightarrow 3}\right]=0 \\
\downarrow \\
\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{\mathrm{df}, 3}\right]=0
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
F_{\text {three }} \equiv \frac{1}{2 \omega L^{3}}\left[(2 / 3) i F_{\mathrm{i} \varepsilon}-\frac{1}{\left[i F_{\mathrm{i} \&}\right]^{-1}-[1-i \mathcal{M} i G]^{-1} i \mathcal{M}}\right] \\
\downarrow \\
F_{3}=\frac{1}{2 \omega L^{3}}\left[-\frac{2 F}{3}+\frac{1}{F^{-1}+\left(1+\mathcal{K}_{2} G\right)^{-1} \mathcal{K}_{2} F}\right]
\end{gathered}
$$

These changes were made in the conference proceedings [arXiv:|3||.4848] but the definition of $K_{d f, 3}$ has since been corrected

Changes

$$
\operatorname{det}\left[F_{\text {three }}^{-1}+i \mathcal{M}_{d f, 3 \rightarrow 3}\right]=0
$$

Real infinite-volume K-matrix-like quantity with physical divergences subtracted

$$
F_{\text {three }} \equiv \frac{1}{2 \omega L^{3}}\left[(2 / 3) i F_{\mathrm{i} \mathrm{i}}-\frac{1}{\left[i \mathrm{i}_{\mathrm{id}}\right]^{-1}-[1-i \mathcal{M} i G]^{-1} i \mathcal{M}}\right]
$$

Kinematic factor defined with PV integration (instead of iغ prescription) so real

$$
F_{3}=\frac{1}{2 \omega L^{3}}
$$

These changes were made in the conference proceedings [arXiv:|3||.4848] but the definition of $K_{d f, 3}$ has since been corrected

Implications of changes
 $$
\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{\mathrm{df}, 3}\right]=0
$$

- Finite-volume spectrum still determined by infinite-volume scattering-like amplitudes (up to corrections falling faster than any power of L)
- Previous check of formalism at threshold ($\mathbf{P}=0, \mathrm{E} \approx 3 \mathrm{~m}$) by comparison to NR results still goes through since changes to F_{3} are minor
- Practical application remains equally challenging: requires truncation and assumptions about amplitudes
- Relation of $\mathcal{K}_{\mathrm{df}, 3}$ to physical 3-particle scattering amplitude not yet clear

Sources of changes

Cusps

- Our previous analysis dealt with all I/L effects arising from 3-particle cuts
- Cusps lead to additional I/L effects (beginning at I/L4) [Polejaeva \& Rusetsky]
- These are relevant for three (or more) particles, but not for two
- They occur in 3-particle intermediate states adjacent to $2 \rightarrow 2$ kernels

Cusps

- Our previous analysis dealt with all I/L effects arising from 3-particle cuts
- Cusps lead to additional I/L effects (beginning at I/L4) [Polejaeva \& Rusetsky]
- These are relevant for three (or more) particles, but not for 2
- They occur in 3-particle intermediate states adjacent to $2 \rightarrow 2$ kernels

 $+\cdots$

Cusp analysis (1)

- Aim: replace sums with integrals + finite-volume residue
- E.g.
$(E, \vec{P}) \longrightarrow$

- Can replace sums with integrals for smooth, non-singular parts of summand
- Singular part of left-hand 3-particle intermediate state

$$
\frac{1}{L^{6}} \sum_{\vec{k}} \sum_{\vec{a}} \frac{A(\vec{k}, \vec{a}) B(\vec{k}, \vec{a})}{E-\omega_{k}-\omega_{a}-\omega_{k a}}
$$

Cusp analysis (2)

$$
\frac{1}{L^{6}} \sum_{\vec{k}} \sum_{\vec{a}} \frac{A(\vec{k}, \vec{a}) B(\vec{k}, \vec{a})}{E-\omega_{k}-\omega_{a}-\omega_{k a}}
$$

- Step I:

$$
\frac{1}{L^{3}} \sum_{\vec{a}} \longrightarrow \int_{\vec{a}}+\left(\frac{1}{L^{3}} \sum_{\vec{a}}-\int_{\vec{a}}\right)
$$

Difference gives zeta-function F with A \& B projected on shell [Lüscher,...]

- Step 2:

Want to replace sum over \mathbf{k} with integral Only possible if integral over a gives smooth function Requires use of Principal Value prescription, analytically continued when values of \mathbf{k} such that top two particles are below threshold
(i\& prescription and standard PV lead to cusps)

Cusp analysis (3)

- Simple example: $\int_{\vec{a}} \frac{A(\vec{k}, \vec{a}) B(\vec{k}, \vec{a})}{E-\omega_{k}-\omega_{a}-\omega_{k a}} \longrightarrow f(c)=\int_{0}^{\infty} d x \frac{\sqrt{x} e^{-(x-c)}}{c-x}$

Cusp analysis (4)

- Using $\widetilde{\mathrm{PV}}$ prescription leads to \mathcal{K}_{2} with standard analytic continuation below threshold

$$
\mathcal{K}_{2}^{\ell}=\frac{16 \pi E^{*}}{a^{*} \cot \delta_{\ell}\left(a^{*}\right)}
$$

- This prescription is that used previously when studying finite-volume effects on bound-state energies using two-particle quantization condition
- If instead use PV prescription, then $\mathrm{a}^{*} \cot \delta$ has a cusp at threshold

Symmetry breaking

- Using $\widetilde{\mathrm{PV}}$ prescription breaks particle interchange symmetry
- Top two particles treated differently from spectator
- Leads to very complicated definition for $\mathcal{K}_{\mathrm{df}, 3}$, e.g.

- Relation between \mathcal{K}_{2} and \mathcal{M}_{2} simple, but that between $\mathcal{K}_{\mathrm{df}, 3}$ and $\mathcal{M}_{3}, \mathcal{M}_{2}$ not yet known

Outlook \& Plans
 $$
\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{\mathrm{df}, 3}\right]=0
$$

- Write-up of corrected analysis nearly complete
- Relation of $\mathcal{K}_{\mathrm{df}, 3}$ to physical amplitudes under study (partial results so far)
- Numerical examples using simple models are underway
- We also plan to compare in more detail with [Polejaeva \& Rusetsky], [Briceño \& Davoudi] \& [HAL QCD]

Outlook \& Plans

- Write-up of corrected analysis nearly complete
- Relation of $\mathcal{K}_{\mathrm{df}, 3}$ to physical amplitudes under study (partial results so far)
- Numerical examples using simple models are underway
- We also plan to compare in more detail with [Polejaeva \& Rusetsky], [Briceno \& Davoudi] \& [HAL QCD]

Outlook \& Plans

- Write-up of corrected analysis nearly complete
- Relation of $\mathcal{K}_{\mathrm{df}, 3}$ to physical amplitudes under study (partial results so far)
- Numerical examples using simple models are underway
- We also plan to compare in more detail with [Polejaeva \& Rusetsky], [Briceno \& Davoudi] \& [HAL QCD]

$$
\begin{aligned}
& \text { Thank you! } \\
& \text { Any questions? }
\end{aligned}
$$

Backup Slides

Threshold expansion

- Given complexity of derivation \& new features of result, it is clearly important to check it to the extent possible
- Can do so for $\mathbf{P}=0$ and near threshold: $\mathrm{E}=3 \mathrm{~m}+\Delta \mathrm{E}$, with $\Delta \mathrm{E} \sim \mathrm{I} / \mathrm{L}^{3}+\ldots$
- In other words, study energy shift of three particles (almost) at rest
- Dominant effects $\left(\mathrm{L}^{-3}, \mathrm{~L}^{-4}, \mathrm{~L}^{-5}\right)$ involve 2-particle interactions, but 3-particle interaction enters at L^{-6}
- For large L , particles are non-relativistic $(\Delta \mathrm{E} \ll \mathrm{m})$ and can use NREFT methods
- This has been done previously by [Beane, Detmold \& Savage, 0707.1670] and [Tan, 0709.2530]

Our threshold expansion

$$
E=3 m+\frac{12 \pi a}{m L^{3}}\left[1-\left(\frac{a}{\pi L}\right) \mathcal{I}+\left(\frac{a}{\pi L}\right)^{2}\left[\mathcal{I}^{2}+\mathcal{J}\right]+\left(\frac{a}{\pi L}\right)^{3}\left[-\mathcal{I}^{3}+\mathcal{I} \mathcal{J}+15 \mathcal{K}-16 \mathcal{Q}-8 \mathcal{R}\right]\right]
$$

$$
+\frac{72 a^{3} \pi^{2} r}{m L^{6}}+\frac{36 a^{2} \pi^{2}}{m^{3} L^{6}}+\frac{\tilde{a}_{6}}{L^{6}}+\mathcal{O}\left(1 / L^{7}\right)
$$

UV convergent!

$$
\begin{aligned}
& \mathcal{Q} \equiv-2048 L^{3} m^{3} \pi^{6} \sum_{\vec{k} \neq 0, \vec{p} \neq 0} G_{0, k} G_{k, p} G_{p, 0} \\
&=\sum_{\vec{n}_{k} \neq 0, \vec{n}_{p} \neq 0} \frac{1}{\vec{n}_{k}^{2} \vec{n}_{p}^{2}\left[\vec{n}_{k}^{2}+\vec{n}_{p}^{2}+\left(\vec{n}_{k}+\vec{n}_{p}\right)^{2}\right]}+\mathcal{O}(1 / L) \\
& \hat{\mathcal{Q}} \text { of }[\text { Beane et al. }]
\end{aligned}
$$

Log divergent after NR expansion, so requires regulation as in [Beane et al.]

Similar situation for \mathcal{R}

Our threshold expansion

$$
E=3 m+\frac{12 \pi a}{m L^{3}}\left[1-\left(\frac{a}{\pi L}\right) \mathcal{I}+\left(\frac{a}{\pi L}\right)^{2}\left[\mathcal{I}^{2}+\mathcal{J}\right]+\left(\frac{a}{\pi L}\right)^{3}\left[-\mathcal{I}^{3}+\mathcal{I} \mathcal{J}+15 \mathcal{K}-16 \mathcal{Q}-8 \mathcal{R}\right]\right]
$$

$$
+\frac{72 a^{3} \pi^{2} r}{\int_{\text {] have 24, [Tan] has 36, }} m L^{6}}+\frac{36 a^{2} \pi^{2}}{m^{3} L^{6}}+\frac{\tilde{a}_{6}}{L^{6}}+\mathcal{O}\left(1 / L^{7}\right) \quad .
$$

Physical, finite quantity, with no μ dependence Directly related to scattering amplitudes In [Beane et al.] this term is
[Beane et al.] and [Tan] do not have this term

$$
\frac{1}{L^{6}} \eta_{3}(\mu)
$$

Interpretation of "differences"

$$
\begin{gathered}
+\frac{64 \pi a^{4}}{M L^{6}}(3 \sqrt{3}-4 \pi) \log (\mu L)+\frac{24 \pi^{2} a^{3}}{M L^{6}} r+\frac{1}{L^{6}} \eta_{3}(\mu) \quad \text { VS. }+\frac{72 a^{3} \pi^{2} r}{m L^{6}}+\frac{36 a^{2} \pi^{2}}{m^{3} L^{6}}+\frac{\tilde{a}_{6}}{L^{6}} \\
\text { [Beane et al.] }
\end{gathered}
$$

- We do not know a priori the relation between $\mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ and η_{3}
- We can view this comparison as providing the relation between $\mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}$ and η_{3} if we equate the two expressions
- As far as we can see, there is nothing forbidding this relation to include the finite a^{2} and $a^{3} r$ terms
- Indeed, a similar finite difference is required to match [Beane et al.] with [Tan]
- It would clearly be good to check this purported relation in another context

