$\mathrm{SU}(3)$ gauge theory with 12 flavours in a twisted box

C.-J. David Lin
National Chiao-Tung University, Hsinchu, Taiwan

Lattice 2014, Columbia U., NYC 25/06/2014

Collaborators

- Kenji Ogawa (NCTU,Taiwan*)
- Hiroshi Ohki (KMI, Nagoya U., Japan)
- Alberto Ramos (DESY Zeuthen, Germany)
- Eigo Shintani (U. of Mainz, Germany)
*Till november 2013

Strategy/challenges for the lattice search of IRFP

- Spectrum: Large finite-volume effects.
- Finite-size scaling a'la M. Fisher : universal curves.
- Running coupling: (slow) running within error.

The Twisted Polyakov Loop scheme

C.-J.D.L., K.Ogawa, H.Ohki, E.Shintani, 2012

without $(\mathrm{L} / \mathrm{a}=12 \rightarrow \mathrm{~L} / \mathrm{a}=24)$ systematics severely underestimated...
K. Ogawa, lattice 2013

with $(\mathrm{L} / \mathrm{a}=12 \rightarrow \mathrm{~L} / \mathrm{a}=24)$

It is challenging to draw any conclusion from such a "noisy scheme".

Outline

- Step scaling.
- Twisted box.
- Wilson flow and numerical results.
- Outlook.

The step-scaling method The practice

O Massless unimproved staggered fermions with Wilson's plaquette gauge action.

- Compute $\bar{g}_{\text {lat }}^{2}$ at many g_{0}^{2} for each volume, and then interpolate volume by volume.

O Very challenging to pin down percentage-level effects in $r_{\sigma}=\frac{\sigma(u)}{u}$.

Twisted box

 removing the torons, no odd powers in g.- Gauge field:
G. 't Hooft, I979

$$
U_{\mu}(x+\widehat{\nu} L)=\Omega_{\nu} U_{\mu}(x) \Omega_{\nu}^{\dagger}, \quad \nu=1,2
$$

where the twist matrices Ω_{ν} satisfy

$$
\Omega_{1} \Omega_{2}=\mathrm{e}^{2 i \pi / 3} \Omega_{2} \Omega_{1}, \quad \Omega_{\mu} \Omega_{\mu}^{\dagger}=1, \quad\left(\Omega_{\mu}\right)^{3}=1, \operatorname{Tr}\left(\Omega_{\mu}\right)=0
$$

- Fermion: If $\psi(x+\widehat{\nu} L)=\Omega_{\nu} \psi(x)$

$$
\Rightarrow \psi(x+\hat{\nu} L+\hat{\rho} L)=\Omega_{\rho} \Omega_{\nu} \psi(x) \neq \Omega_{\nu} \Omega_{\rho} \psi(x)
$$

- The fermion "smell" dof: $N_{s}=N_{c}$

$$
\psi_{\alpha}^{a}(x+\widehat{\nu} L)=\mathrm{e}^{i \pi / 3} \Omega_{\nu}^{a b} \psi_{\beta}^{b}(x)\left(\Omega_{\nu}\right)_{\beta \alpha}^{\dagger}
$$

The Gradient Flow scheme

- The quantity, $\langle E(t)\rangle=\frac{1}{4}\left\langle G_{\mu \nu}(t) G_{\mu \nu}(t)\right\rangle$, is finite when expressed in terms of renormalised coupling at positive flow time.
- In a colour-twisted box, can define,

$$
\bar{g}_{\mathrm{GF}}^{2}(L)=\mathcal{N}^{-1} t^{2}\langle E(t)\rangle=\bar{g}_{\mathrm{MS}}^{2}+\mathcal{O}\left(\bar{g}_{\mathrm{MS}}^{4}\right),
$$

with tree-level improvement.

- Use the clover operator, as well as the plaquette, to extract $\langle E(t)\rangle$.
- Step scaling at fixed $c_{\mathrm{T}}=\frac{\sqrt{8 t}}{L}$.

Bare-coupling interpolation

Bare-coupling interpolation

NDP fit of the plaquette coupling

NDP fit of the plaquette coupling

NDP fit of the plaquette coupling

Bare-coupling interpolation

NDP fit of the plaquette coupling

Continuum extrapolation

Continuum extrapolation

Results

Remarks and outlook

- Wilson Flow offers a very nice tool to perform the difficult task of the search for IRFP.
- In our work, we have to go to $\mathrm{c} \sim 0.4$ to have the continuum extrapolation under control.
- From our work, it is still inclusive whether $\mathrm{SU}(3)$ gauge theory is QCD-like or conformal in the IR, although the running is very slow.
- Better data on the way...

