Omega-Omega interaction from 2+1 flavor QCD

Masanori Yamada (University of Tsukuba) for HAL QCD Collaboration

S. Aoki ,	C. Brun	o ,	T. Doi ,	F. Etmi r	1an ,	T. Hatsud a	a, Y. Ikeda ,	
(YITP)	(Univ. of T	ōkyo)	(RIKEN)	(Univ. of 1	Īsukuba)	(RIKEN)	(RIKEN)	
T.	Inoue,	N. Isł	nii,	K. Murano ,	H. Ne	mura,	K. Sasaki	
(Nih	on Univ.)	(Osaka	Univ.)	(RCNP)	(Univ. o	f Tsukuba)	(Univ. of Tsukuba)	

Lattice 2014 Jun 26, 2014, Columbia, NY

Outline

- Introduction
- Formulation
 - Construction of the potential [HAL QCD method]
 - Symmetry of Omega-Omega system
- Lattice QCD Simulation results
 - Potential
 - phase shift & binding energy
- Conclusion

Outline

Introduction

• Formulation

- Construction of the potential [HAL QCD method]
- Symmetry of Omega-Omega system
- Lattice QCD Simulation results
 - Potential
 - phase shift & binding energy
- Conclusion

Decuplet Baryon

Motivation

- \cdot Omega baryon is stable in QCD
- \cdot It's a first target of Decuplet-Decuplet

interactions at HAL QCD method.

• There have been different model calculations in the J=0 channel

Decuplet Baryon

Motivation

- \cdot Omega baryon is stable in QCD
- \cdot It's a first target of Decuplet-Decuplet

interactions at HAL QCD method.

• There have been different model calculations in the J=0 channel

 \cdot There have been different model calculations in the J=0 channel

There have been different model calculations in the J=0 channel

interaction energy

 $\Delta M_{\Omega\Omega} = E_{\Omega\Omega} - 2M_\Omega = -166 {
m MeV}$

(SU(3) Chiral Quark Model)

$$E_{\Omega\Omega}\equiv 2\sqrt{k^2+M_\Omega^2}$$

There have been different model calculations in the J=0 channel

interaction energy

 $\Delta M_{\Omega\Omega} = E_{\Omega\Omega} - 2M_\Omega = -166 {
m MeV}$

(SU(3) Chiral Quark Model)

$$E_{\Omega\Omega}\equiv 2\sqrt{k^2+M_\Omega^2}$$

There have been different model calculations in the J=0 channel

interaction energy

$$\Delta M_{\Omega\Omega} = E_{\Omega\Omega} - 2M_{\Omega} = -166 {
m MeV}$$

(SU(3) Chiral Quark Model)

$$E_{\Omega\Omega}\equiv 2\sqrt{k^2+M_\Omega^2}$$

$$\Delta M_{\Omega\Omega} = E_{\Omega\Omega} - 2M_{\Omega} = 43 \pm 18 {
m MeV}$$

(Quark Disloc./Color-screen Model)

[Z.Y.Zhang et al. Phys.Rev.C .61, 065204] [F.Wang et al. Phys Rev C. 51, 3411]

There have been different model calculations in the J=0 channel

Report from another group (Lattice QCD simulation)

Lüscher's method [Lüscher CMP105(86)153, NPB354(91)531]

Buchoff et al. : L=3fm Ω=1628[MeV]

 $J=0: weak repulsion a= -0.16 \pm 0.22 \text{ fm}$ [arXiv:1201.3596]

J=2 : strong repulsion

J.Wasem @Lattice2012

Report from another group (Lattice QCD simulation)

Lüscher's method [Lüscher CMP105(86)153, NPB354(91)531]

Buchoff et al. : L=3fm Ω=1628[MeV]

 $J=0: weak repulsion a= -0.16 \pm 0.22 \text{ fm} \text{ [arXiv:1201.3596]}$ J=2: strong repulsion $J=0.16 \pm 0.22 \text{ fm} \text{ [arXiv:1201.3596]}$ $J=0.16 \pm 0.22 \text{ fm} \text{ [arXiv:1201.3596]}$

no definite conclusion, attraction or repulsion

Report from another group (Lattice QCD simulation)

Lüscher's method [Lüscher CMP105(86)153, NPB354(91)531]

Buchoff et al. : L=3fm Ω=1628[MeV]

 $J=0: weak repulsion a= -0.16 \pm 0.22 \text{ fm} \text{ [arXiv:1201.3596]}$ J=2: strong repulsion J.Wasem @Lattice2012

no definite conclusion, attraction or repulsion

determine a nature of J=0 Omega-Omega interaction, attractive or repulsive

Outline

Introduction

Formulation

- Construction of the potential [HAL QCD method]
- Symmetry of Omega-Omega system
- Lattice QCD Simulation results
 - Potential
 - phase shift & binding energy
- Conclusion

Q. What is the wave function in QCD ?

Q.What is the wave function in QCD ?

A. Nambu-Bethe-Salpeter(NBS) wave function

Q.What is the wave function in QCD ?

A. Nambu-Bethe-Salpeter(NBS) wave function

$$\psi_k(r) \equiv \langle 0 | \Omega(r) \Omega(0) | \overline{\Omega}(k) \overline{\Omega}(-k); in \rangle$$

Because

NBS wave has the same asymptotic form of the scattering wave in quantum mechanics.

Wave function↔phase shift↔S-matrix

$$\psi_k(r) \simeq e^{i\delta(k)} \frac{\sin(kr - \frac{l\pi}{2} + \delta(k))}{kr}$$

[C.-J.D Lin et al., NPB619(2001)467.]

Energy independent potential U(r,r') is defined from NBS wave function.

because of

$$(rac{k^2}{m}+rac{1}{m}
abla^2)\psi_k(r)=\int d^3r' U(r,r')\psi_k(x')$$
 This potential reproduces the phase shift faithfully

we can extract a potential (interaction kernel) which is defined through the NBS wave function which gives the correct scattering phase shift at asymptotic state.

Symmetry of Ω - Ω

 $\boldsymbol{\Omega}$ operator is defined as

$$\Omega_{\alpha,\mathbf{k}} \equiv \varepsilon^{abc} s^a (C\gamma_{\mathbf{k}}) s^b s^c_{\alpha}$$

blue is spin1 index, red is spin $\frac{1}{2}$ index

We treat spin 3/2 made from spin 1 and spin 1/2 linear combination by using highest weight construction

•one
$$\Omega$$
 case(spin $\frac{3}{2}$)
spin $\frac{1}{2} \otimes spin1 = spin \frac{3}{2} \oplus spin \frac{1}{2}$

•consider two Ω case (Ω - Ω interaction)

$${\operatorname{spin}} rac{3}{2} \otimes {\operatorname{spin}} rac{3}{2} = {\operatorname{spin3}} \oplus {\operatorname{spin2}} \oplus {\operatorname{spin1}} \oplus {\operatorname{spin0}}$$

Symmetry of Ω - Ω

Conserved quantity J, J_z, P

- parity $P = (-1)^L$
- \cdot quantum spin $(-1)^{S+1}$

fermionic condition

$$(-1)^L \times (-1)^{S+1} = -1$$

 $\psi_1\psi_2=-\psi_2\psi_1$

Which L ,S is allowed at J^P

	P=+	P=-
J=0	S=0 L=0 , S=2 L=2	S=1 L=1 , S=3 L=3
J=1	S=2 L=2	S=1 L=1 , S=3 L=3
J=2	S=2 L=0 , S=0 L=2 , S=2 L=2 , S=2 L=4	S=1 L=1 , S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=3	S=2 L=2 , S=2 L=4	S=3 L=1, S=1 L=3, S=3 L=3, S=3 L=5
J=4	S=2 L=2 , S=0 L=4 , S=2 L=4 , S=2 L=6	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=1 L=5 , S=3 L=5 , S=3 L=7

	P=+	P=-
J=0	S=0 L=0 , S=2 L=2	S=1 L=1 , S=3 L=3
J=1	S=2 L=2	S=1 L=1 , S=3 L=3
J=2	$S{=}2$ L=0 , S=0 L=2 , S=2 L=2 , S=2 L=4	S=1 L=1 , S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=3	S=2 L=2 , S=2 L=4	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=4	$S\!\!=\!\!2$ L=2 , S=0 L=4 , S=2 L=4 , S=2 L=6	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=1 L=5 , S=3 L=5 , S=3 L=7

at sink

	P=+	P=-
J=0	S=0 L=0 , S=2 L=2	S=1 L=1 , S=3 L=3
J=1	S=2 L=2	S=1 L=1 , S=3 L=3
J=2	S=2 L=0 , S=0 L=2 , S=2 L=2 , S=2 L=4	S=1 L=1 , S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=3	S=2 L=2 , S=2 L=4	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=4	$S{=}2$ L=2 , S=0 L=4 , S=2 L=4 , S=2 L=6	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=1 L=5 , S=3 L=5 , S=3 L=7

$L=0 \leftarrow We$ use wall source

at sink

	P=+	P=-
J=0	S=0 L=0 , S=2 L=2	S=1 L=1 , S=3 L=3
J=1	S=2 L=2	S=1 L=1 , S=3 L=3
J=2	S=2 L=0 , S=0 L=2 , S=2 L=2 , S=2 L=4	S=1 L=1 , S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=3	S=2 L=2 , S=2 L=4	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=4	$S{=}2$ L=2 , S=0 L=4 , S=2 L=4 , S=2 L=6	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=1 L=5 , S=3 L=5 , S=3 L=7

 $L=0 \iff We \text{ use wall source}$ $J=0 \iff S=0$

at sink

	P=+	P=-
J=0	S=0 L=0 , S=2 L=2	S=1 L=1 , S=3 L=3
J=1	S=2 L=2	S=1 L=1 , S=3 L=3
J=2	S=2 L=0 , S=0 L=2 , S=2 L=2 , S=2 L=4	S=1 L=1 , S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=3	S=2 L=2 , S=2 L=4	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=3 L=5
J=4	$S{=}2$ L=2 , S=0 L=4 , S=2 L=4 , S=2 L=6	S=3 L=1 , S=1 L=3 , S=3 L=3 , S=1 L=5 , S=3 L=5 , S=3 L=7

 $L=0 \iff We \text{ use wall source}$ $J=0 \iff S=0$

at sink

We can extract S=0 L=0,S=2 L=2

Outline

- Introduction
- Formulation
 - Construction of the potential [HAL QCD method]
 - Symmetry of Omega-Omega system
- Lattice QCD Simulation results
 - Potential
 - phase shift & binding energy
- Conclusion

Lattice set up

We used 2 sets (Small , Large)

	Small	Large	
Lattice volume	L = 1.950(30) [fm]	L = 2.902(42) [fm]	
	$\rm K_s = 0.13710 \ \rm K_{ud} = 0.13760$	$\rm K_{s} = 0.13640 \ \rm K_{ud} = 0.13700$	
nopping parameters	$M_\Omega = 2104(8) [{\rm MeV}] \ M_\pi = 875(1) [{\rm MeV}]$	$M_\Omega = 1966(6) [{\rm MeV}] \; M_\pi = 701(5) [{\rm MeV}]$	
β	β=1.83	β=1.90	
lattice spaceing	a = 0.1219(19)[fm]	a = 0.0907(13) [fm]	

•RG improved gauge action & O(a) improved Wilson quark action

•flat wall source(P=0)

CP-PACS/JLQCD Collaborations: [T. Ishikawa, et al., Phys. Rev. D78 (2008) 011502(R)]

Experiment value of Ω mass is [1672 MeV]

PACS-CS Collaboration: [S. Aoki, et al., Phys. Rev. D79 (2009) 034503]

Results of the small volume

Ω - Ω Potential (Small volume) @lattice2013

t is relative time between source and sink

 $t \equiv t_1 - t_0$

 $C_{\Omega\Omega}(\overrightarrow{x},\overrightarrow{y},t_1,t_0)\equiv \langle 0|\,\Omega(\overrightarrow{x},t_1)\Omega(\overrightarrow{y},t_1)\overline{\Omega}(0,t_0)\overline{\Omega}(0,t_0)\,|0
angle$

Ω - Ω Potential (Small volume) update

t is relative time between source and sink

 $t \equiv t_1 - t_0$

 $C_{\Omega\Omega}(\overrightarrow{x},\overrightarrow{y},t_1,t_0)\equiv \langle 0|\,\Omega(\overrightarrow{x},t_1)\Omega(\overrightarrow{y},t_1)\overline{\Omega}(0,t_0)\overline{\Omega}(0,t_0)\,|0
angle$

Ω - Ω Potential (Small volume) update

Ω - Ω Potential (Small volume) update

Phase shift & Binding energy (Small volume)

We found bound states, but binding energies are very small.

	Binding ene	ergy	Scattering length
t=7	-0.13 <u>+</u> 0.28	[MeV]	-13.32 \pm 20.34 [fm]
t=8	-0.47 <u>+</u> 1.00	[MeV]	–7.07 ± 7.70 [fm]
t=9	-4.64 <u>+</u> 4.73	[MeV]	–2.71 ± 1.32 [fm]
Phase shift & Binding energy (Small volume)

We found bound states, but binding energies are very small.

	Binding energy		Scattering length	
t=7	-0.13 <u>+</u> 0.28	[MeV]	-13.32 ±	20.34 [fm]
t=8	-0.47 <u>+</u> 1.00	[MeV]	-7.07 ±	7.70 [fm]
t=9	-4.64 <u>+</u> 4.73	[MeV]	-2.71 ±	1.32 [fm]

Phase shift & Binding energy (Small volume)

We found bound states, but binding energies are very small.

	Binding energy	Scattering length	
t=7	-0.13 <u>+</u> 0.28 [MeV]	-13.32 ± 20.34 [fm]	
t=8	-0.47 <u>+</u> I.00 [MeV]	-7.07 ± 7.70 [fm]	
t=9	-4.64 _± 4.73 [MeV]	-2.71 ± 1.32 [fm]	

Results of the large volume

Ω - Ω Potential (Large volume)

Ω - Ω Potential (Large volume)

repulsive core grow

Ω - Ω Potential (Large volume)

Phase shift (Large volume)

Phase Shift

Phase shift (Large volume)

Phase Shift

Large vs Small

stronger repulsive core at larger volume

attraction	bound	repulsion	
results	strong attraction	weak repulsion(?)	
ground sate saturation	not needed	needed	
Lattice volume	2.9[fm]	3.9[fm]	
fermion mass	heavy(π=701)	light(π=390)	
method	potential (our work)	finite volume (Buchoff et al.)	

Conclusion

- We extended HAL method to decoupletdecouplet system.
- We showed small volume and large volume results.
- J=0 Omega-Omega interaction is strongly attractive but we can not decide whether the bound state exists or not due to large errors.

Contact E-mail: sinyamada@het.ph.tsukuba.ac.jp web: http://www-het.ph.tsukuba.ac.jp/~sinyamada/index.html

Contact E-mail: sinyamada@het.ph.tsukuba.ac.jp web: http://www-het.ph.tsukuba.ac.jp/~sinyamada/index.html

Back up slide

comparison Luscher method, HAL method(phase shift π - π in I=2 channel)

The result of phase shift have been found to agree well between the two methods!

It's difficult to compare these methods without calculating finite volume method at large t and more statics!

Back up slide

Mass dependence (N-N interaction)

Fig. 5. The central potentials in the ${}^{1}S_{0}$ channel for three different quark masses.

We expect Ω - Ω is similar to N-N case

[Sinya Aoki et al. Prog. Theor. Phys. 123,89]

Large vs Small

because growth of repulsive core

	boundary	effect
$V(\vec{r})$		$\tilde{V}(\vec{r}) = \sum_{\vec{n} \in \mathbb{Z}^3} V(\vec{r} + L\vec{n})$

S=0 \Leftarrow a special circumstance in Ω - Ω system

- flavor is completely symmetry
- wall source

source operator

$$\overline{\Omega} = \varepsilon^{abc} (\gamma_k C)_{\beta\gamma} \overline{s}^a_{\alpha} \overline{s}^b_{\beta} \overline{s}^c_{\gamma}$$

a,b,c: color index α,β,γ : spin index

highest state in Ω - Ω (spin3)

$$\overline{s}^a_{rac{1}{2}}(x)\overline{s}^b_{rac{1}{2}}(x)\overline{s}^c_{rac{1}{2}}(x)\overline{s}^a_{rac{1}{2}}(y)\overline{s}^b_{rac{1}{2}}(y)\overline{s}^c_{rac{1}{2}}(y)$$
 For simply neglect ϵ , YC

We can make all state using lowering operator

spin3⇒spin2⇒spin1⇒spin0

For example one term of spin2 state

$$\overline{s}^a_{\frac{1}{2}}(x)\overline{s}^b_{\frac{1}{2}}(x)\overline{s}^c_{\frac{1}{2}}(x)\overline{s}^a_{\frac{1}{2}}(y)\overline{s}^b_{\frac{1}{2}}(y)\overline{s}^c_{-\frac{1}{2}}(y)$$

spin2 term is written by linear combination of these terms.

$$\overline{s}^a_{\frac{1}{2}}(x)\overline{s}^b_{\frac{1}{2}}(x)\overline{s}^c_{\frac{1}{2}}(x)\overline{s}^a_{\frac{1}{2}}(y)\overline{s}^b_{\frac{1}{2}}(y)\overline{s}^c_{-\frac{1}{2}}(y)$$

= 0 Spin2 state should be 0

$$\overline{s}^a_{\frac{1}{2}}(x)\overline{s}^b_{\frac{1}{2}}(x)\overline{s}^c_{\frac{1}{2}}(x)\overline{s}^a_{\frac{1}{2}}(y)\overline{s}^b_{\frac{1}{2}}(y)\overline{s}^c_{-\frac{1}{2}}(y)$$

$$\begin{aligned} \text{wall source} \Rightarrow \quad \left(\sum_{x} \overline{s_{\frac{1}{2}}^{a}(x)}\right) \left(\sum_{x'} \overline{s_{\frac{1}{2}}^{b}(x')}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{c}(x'')}\right) \left(\sum_{y} \overline{s_{\frac{1}{2}}^{a}(y)}\right) \left(\sum_{y'} \overline{s_{\frac{1}{2}}^{b}(y')}\right) \left(\sum_{y''} \overline{s_{-\frac{1}{2}}^{c}(y'')}\right) \\ = -\left(\sum_{y} \overline{s_{\frac{1}{2}}^{a}(y)}\right) \left(\sum_{x'} \overline{s_{\frac{1}{2}}^{b}(x')}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{c}(x'')}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{c}(x')}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{b}(y)}\right) \left(\sum_{y''} \overline{s_{\frac{1}{2}}^{b}(y')}\right) \left(\sum_{y''} \overline{s_{-\frac{1}{2}}^{c}(y'')}\right) \\ = -\left(\sum_{x} \overline{s_{\frac{1}{2}}^{a}(x)}\right) \left(\sum_{x'} \overline{s_{\frac{1}{2}}^{b}(x')}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{c}(x'')}\right) \left(\sum_{y''} \overline{s_{\frac{1}{2}}^{a}(y)}\right) \left(\sum_{y''} \overline{s_{\frac{1}{2}}^{b}(y')}\right) \left(\sum_{y''} \overline{s_{-\frac{1}{2}}^{c}(y'')}\right) \\ \end{aligned}$$

= 0 Spin2 state should be 0

$$\overline{s}^a_{\frac{1}{2}}(x)\overline{s}^b_{\frac{1}{2}}(x)\overline{s}^c_{\frac{1}{2}}(x)\overline{s}^a_{\frac{1}{2}}(y)\overline{s}^b_{\frac{1}{2}}(y)\overline{s}^c_{-\frac{1}{2}}(y)$$

= 0 Spin2 state should be 0

$$\overline{s}^a_{\frac{1}{2}}(x)\overline{s}^b_{\frac{1}{2}}(x)\overline{s}^c_{\frac{1}{2}}(x)\overline{s}^a_{\frac{1}{2}}(y)\overline{s}^b_{\frac{1}{2}}(y)\overline{s}^c_{-\frac{1}{2}}(y)$$

$$\begin{aligned} \text{wall source} \Rightarrow \quad \left(\sum_{x} \overline{s_{\frac{1}{2}}^{a}(x)}\right) \left(\sum_{x'} \overline{s_{\frac{1}{2}}^{b}(x')}\right) \left(\sum_{x'} \overline{s_{\frac{1}{2}}^{c}(x')}\right) \left(\sum_{y'} \overline{s_{\frac{1}{2}}^{b}(y)}\right) \left(\sum_{y'} \overline{s_{-\frac{1}{2}}^{b}(y')}\right) \left(\sum_{y'} \overline{s_{-\frac{1}{2}}^{c}(y')}\right) \\ = -\left(\sum_{y} \overline{s_{\frac{1}{2}}^{a}(y)}\right) \left(\sum_{x'} \overline{s_{\frac{1}{2}}^{b}(x')}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{c}(x')}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{a}(x)}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{b}(y')}\right) \left(\sum_{y''} \overline{s_{-\frac{1}{2}}^{b}(y')}\right) \\ = -\left(\sum_{x} \overline{s_{\frac{1}{2}}^{a}(x)}\right) \left(\sum_{x'} \overline{s_{\frac{1}{2}}^{b}(x')}\right) \left(\sum_{x''} \overline{s_{\frac{1}{2}}^{c}(x'')}\right) \left(\sum_{y''} \overline{s_{\frac{1}{2}}^{a}(y)}\right) \left(\sum_{y''} \overline{s_{\frac{1}{2}}^{b}(y')}\right) \left(\sum_{y''} \overline{s_{-\frac{1}{2}}^{c}(y'')}\right) \\ = \mathbf{0} \qquad \text{Spin2 state should be 0} \end{aligned}$$

Spin0 remain

Existence of energy independent nonlocal potential

We assume linear independence of NBS wave function There is a dual bases

$$\int d^3r \widetilde{\psi}_{k'}(r) \psi_k(r) = (2\pi)^3 \delta^3(k'-k)$$

We define K

$$egin{aligned} K_k(r) &\equiv (egin{aligned} & (
abla^2 + k^2) \psi_k(r) \ & = \int rac{d^3 k'}{(2\pi)^3} K_{k'}(r) \int d^3 r' \widetilde{\psi}_{k'}(r') \psi_k(r') \ & = \int d^3 r' \left\{ \int rac{d^3 k'}{(2\pi)^3} K_{k'}(r) \widetilde{\psi}_{k'}(r')
ight\} \psi_k(r') \end{aligned}$$

If we define

$$U(r,r')\equiv rac{1}{m}{\intrac{d^3k'}{(2\pi)^3}K_{k'}(r)\widetilde{\psi}_{k'}(r')}$$

Then we have

$$(rac{k^2}{m}+rac{1}{m}
abla^2)\psi_k(r)=\int d^3r' U(r,r')\psi_k(r')$$

Construction of the potential

Extraction of the NBS wave from Lattice QCD

 $C_{\Omega\Omega}(\overrightarrow{x},\overrightarrow{y},t,t_0) \equiv \langle 0 | \Omega(\overrightarrow{x},t) \Omega(\overrightarrow{y},t) \overline{\Omega}(0,t_0) \overline{\Omega}(0,t_0) | 0 \rangle$ Image $=\sum \left<0\right| \Omega(\overrightarrow{x},t) \Omega(\overrightarrow{y},t) \left|n\right> e^{-E_n(t-t_0)} \left< n\right| \overline{\Omega}(0,t_0) \overline{\Omega}(0,t_0) \left|0\right>$ $\psi_{k_n}(\overrightarrow{x}-\overrightarrow{y},n)$ source $=\sum A_n\psi_{k_n}(x-y,n)e^{-E_n(t-t_0)}+\cdots$ t_0 **Excited states are suppressed** exponentially at large $t - t_0$ inelastic contributions We can get the NBS wave at ground state

Construction of the potential

Extraction of the NBS wave from Lattice QCD

Construction of the potential

Extraction of the NBS wave from Lattice QCD

Time dependent Schrodinger-type equation

$$(rac{1}{4m}rac{\partial^2}{\partial t^2}+rac{1}{m}
abla^2-rac{\partial}{\partial t})R=\int dr' U(r,r')R$$

Time dependent Schrodinger-type equation

R-correlator is defined as

$$R \equiv \frac{\Psi(r,t)}{e^{-2mt}} = \sum_{n} \phi_n(r) e^{-W_n t}$$

$$W_n\equiv 2\sqrt{m^2+ec{k}rac{2}{n}}-2m$$

$$(rac{1}{4m}rac{\partial^2}{\partial t^2}+rac{1}{m}
abla^2-rac{\partial}{\partial t})R=\int dr' U(r,r')R$$

Time dependent Schrodinger-type equation

$$(rac{1}{4m}rac{\partial^2}{\partial t^2}+rac{1}{m}
abla^2-rac{\partial}{\partial t})R=\int dr' U(r,r')R$$

[N.Ishii et al., PLB712(2012)437.]

 $(rac{1}{4m}rac{\partial^2}{\partial t^2}+rac{1}{m}
abla^2-rac{\partial}{\partial t})R=\int dr' U(r,r')R$

2 NBS wave function satisfies Schorodinger eq.

$$(rac{k^2}{m}+rac{1}{m}
abla^2)\psi_k(r)=\int d^3r' U(r,r')\psi_k(x')$$

Time depend method

Time dependent Schrodinger-like equation

$$(rac{1}{4m}rac{\partial^2}{\partial t^2}+rac{1}{m}
abla^2-rac{\partial}{\partial t})R=\int dr' U(r,r')R$$

Time depend method

Time dependent Schrodinger-like equation

[N.Ishii et al., PLB712(2012)437.]

$$(rac{1}{4m}rac{\partial^2}{\partial t^2}+rac{1}{m}
abla^2-rac{\partial}{\partial t})R=\int dr' U(r,r')R$$

We can calculate energy independent non-local potential without relying on the ground state saturation!

fit function dependence

fit function

Gauss + Yukawa $f(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) \frac{e^{-b_5 r}}{r}$ $\lim_{r \to 0} f(r) = b_1$ Gauss + Yukawa^2 $f(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2})^2 (\frac{e^{-b_5 r}}{r})^2$ $\lim_{r \to 0} f(r) = b_1$

2Gauss + Yukawa^2

$$f(r) = b_1 e^{-b_2 r^2} + b_3 e^{-b_4 r^2} + b_5 (1 - e^{-b_6 r^2})^2 (\frac{e^{-b_7 r}}{r})^2$$

 $\lim_{r \to 0} f(r) = b_1 + b_3$