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Motivation
• Present simulations are frequently in the “Aoki regime” (m~a2)

• Increasingly, non-degenerate up and down quarks are used

• How is the competition between quark mass and discretization 
effects impacted by this non-degeneracy?

• In this talk, I study this question for Wilson and twisted mass fermions 
in lattice chiral perturbation theory (ChPT) focusing on the phase 
diagram and pion spectrum

[Sharpe 2013]
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Background
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Continuum SU(3) ChPT
• In leading order (LO) SU(3) ChPT, CP 

is spontaneously violated due to the 
condensate, <Σ>, becoming 
complex 
[Dashen 1971], [Creutz 2004]
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LO SU(2) Lattice ChPT
• Introducing discretization errors into the SU(2) 

ChPT potential, a term proportional to a2 with low 
energy coefficient W’ is added to the potential  
[Symanzik 1983], [Sharpe & Singleton 1998] 
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Non-Degenerate Quarks In ChPT

• SU(2) and SU(3) theories can be matched, expanding in inverse strange 
quark mass
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• LO results in SU(2) ChPT are unaffected by non-degeneracy; 
the effect seen at LO in SU(3) enters at NLO in SU(2)

• At leading order in 1/ms, only the l7 Gasser-Leutwyler coefficient is necessary  
[Gasser & Leutwyler 1984]
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New Results
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Non-Degenerate Quarks In ChPT
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Aoki Scenario (w’<0) First-Order Scenario (w’>0)

Non-Degenerate Quarks with Finite 
Lattice Spacing
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The Aoki phase is continuously connected to the continuum CP violating phase!



Parametrizing the 
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Pion Masses
First-Order Scenario (w’>0)
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Power Counting
• We have considered the l7 term in the SU(2) O(m2) potential but the comparable 

l3 term has been neglected
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• The l3 term does not qualitatively alter the phase diagram near mq=0 and is not 
necessary in qualitatively matching the SU(2) and SU(3) phase diagrams 

• In the Aoki regime (m~A2), if an m2 term is included then mA, A3 and A4 terms 
should also be included 

• As I have checked, while these terms do qualitatively change the phase 
diagram, they do not change it as significantly as the l7 term 
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Twisted Quark Mass

• With non-degenerate quarks, the twist cannot be in the τ3 direction to 
maintain a real fermion determinant [Frezzotti and Rossi 2003]
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• In practice maximal twist (m=0) is most interesting and we consider 
this first
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Aoki Scenario and the continuum (w’≤0)
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First-order Scenario (w’>0)
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Maximal Twist Pion Masses
Aoki Scenario (w’<0)
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Maximal Twist Pion Masses
First-Order Scenario (w’>0)
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Critical Manifold For Arbitrary Twist

First-Order 
Scenario 

(w’>0)

Aoki 
Scenario 

(w’<0)

Continuum 
(w’=0)

• Minimizing the full, 
arbitrary twist 
potential results in a 
critical manifold of 
second-order 
transition. 

• Along this boundary 
at least one pion is 
massless
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Conclusions
• The continuum CP violating phase and the Aoki phase are 

continuously connected 

• The critical surface of this phase can be closer to the physical 
point when discretization effects are considered 

• When non-degenerate quarks are introduced, generic twist, 
including maximal twist, results in a more complicated phase 
diagram and non-degenerate pions 

• Higher order terms modify the phase diagram but the effects are 
not significant
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Order ma~a3
• To see how higher order terms in discretization error effect this picture, 

we need to include two more terms in the potential,
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• Parametrizing Σ and absorbing the part of W3,3 proportional to cosθ into 
m yields:
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• The w3 term which is cubic in cosθ which will introduce asymmetry 
between positive and negative m. Both the w3 and δw terms will shift 
the w’>0 first-order transition line off the imaginary mass axis. These 
terms also make the potential more difficult to analyze exactly.

A detailed discussion of these effects for ε=0 can be found in [Sharpe 2008]
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δw =0 
w3>0

w3= δw =0

δw >0 
w3=0

• There is very little 
qualitative 
difference 
introduced by the 
higher-order 
terms. 

• For w3>0, there is 
a shift toward -m. 

• For δw >0, there is 
a shift and an 
overall slant 
toward -m.

Critical Manifold O(ma~a3) 
Aoki Scenario (w’<0)
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δw =0 
w3>0

w3= δw =0

δw >0 
w3=0

• For w3>0, there is 
a discontinuity in 
the manifold, due 
to the asymmetry 
in positive and 
negative m. 

• For δw >0, is a 
shift in the 
second-order 
endpoints to 
greater m and an 
overall slant in 
towards larger m.

Critical Manifold O(ma~a3) 
First-Order Scenario (w’>0)
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