Centre Vortex Effects on the Overlap Quark Propagator

Daniel Trewartha
Derek Leinweber and Waseem Kamleh

CSSM, School of Chemistry and Physics
University of Adelaide

Wednesday, 25th June 2014

Overview

- The fundamental aspects of the QCD vacuum that are responsible for the dynamical generation of mass through chiral symmetry breaking and confinement are an ongoing source of debate
- Centre vortices are associated with the fundamental centre degree of freedom of QCD, and so are a natural candidate for investigation

Overview

- The fundamental aspects of the QCD vacuum that are responsible for the dynamical generation of mass through chiral symmetry breaking and confinement are an ongoing source of debate
- Centre vortices are associated with the fundamental centre degree of freedom of QCD, and so are a natural candidate for investigation

Overview

- Identifying centre vortices on the lattice via MCG fixing
- Overlap quark propagator on vortex-free and vortex-only backgrounds
- Effects of cooling on vortex-only backgrounds

Overview

- Identifying centre vortices on the lattice via MCG fixing
- Overlap quark propagator on vortex-free and vortex-only backgrounds

Qualitatively different results to previous ASQTAD results

- Effects of cooling on vortex-only backgrounds

Overview

- Identifying centre vortices on the lattice via MCG fixing
- Overlap quark propagator on vortex-free and vortex-only backgrounds

Qualitatively different results to previous ASQTAD results

- Effects of cooling on vortex-only backgrounds

Overview

- Identifying centre vortices on the lattice via MCG fixing
- Overlap quark propagator on vortex-free and vortex-only backgrounds

Qualitatively different results to previous ASQTAD results

- Effects of cooling on vortex-only backgrounds

Identifying Centre Vortices on the Lattice

- Transform to Maximal Centre Gauge, where links are brought close to centre elements

$$
\begin{align*}
Z_{\mu}(x) & =z \mathrm{I}, \quad z^{3}=1 \\
& =\exp \left[\frac{2 \pi i}{3} m_{\mu}(x)\right] \mathrm{I}, \quad m_{\mu}(x) \in\{-1,0,1\} \tag{1}
\end{align*}
$$

- Require transformation $\Omega(x)$ maximising overlap between gauge links and centre elements

$$
\sum_{x, \mu} \operatorname{Re} \operatorname{Tr}^{\top}\left[U_{\mu}^{\Omega}(x) Z_{\mu}^{\dagger}(x)\right] \rightarrow \operatorname{Max}
$$

Identifying Centre Vortices on the Lattice

- Transform to Maximal Centre Gauge, where links are brought close to centre elements

$$
\begin{align*}
Z_{\mu}(x) & =z \mathrm{I}, \quad z^{3}=1 \\
& =\exp \left[\frac{2 \pi i}{3} m_{\mu}(x)\right] \mathrm{I}, \quad m_{\mu}(x) \in\{-1,0,1\} \tag{1}
\end{align*}
$$

- Require transformation $\Omega(x)$ maximising overlap between gauge links and centre elements

$$
\begin{equation*}
\sum_{x, \mu} \operatorname{Re} \operatorname{Tr}\left[U_{\mu}^{\Omega}(x) Z_{\mu}^{\dagger}(x)\right] \rightarrow \operatorname{Max} \tag{2}
\end{equation*}
$$

Identifying Centre Vortices on the Lattice

- Implemented through 'mesonic' centre gauge fixing condition

$$
\begin{equation*}
R_{m e s}=\sum_{x, \mu}\left|\operatorname{Tr} U_{\mu}^{\Omega}(x)\right|^{2} \rightarrow \operatorname{Max} \tag{3}
\end{equation*}
$$

- Then we project onto Z_{3}

$$
\frac{1}{3} \operatorname{Tr} U_{\mu}^{\Omega}(x)=r_{\mu}(x) \exp \left(i \phi_{\mu}(x)\right)
$$

Choose $m_{\mu}(x) \in\{-1,0,1\}$ with $\frac{2 \pi m_{\mu}(x)}{3}$ closest to $\phi_{\mu}(x)$

Identifying Centre Vortices on the Lattice

- Implemented through 'mesonic' centre gauge fixing condition

$$
\begin{equation*}
R_{m e s}=\sum_{x, \mu}\left|\operatorname{Tr} U_{\mu}^{\Omega}(x)\right|^{2} \rightarrow \operatorname{Max} \tag{3}
\end{equation*}
$$

- Then we project onto Z_{3}

$$
\begin{equation*}
\frac{1}{3} \operatorname{Tr} U_{\mu}^{\Omega}(x)=r_{\mu}(x) \exp \left(i \phi_{\mu}(x)\right) \tag{4}
\end{equation*}
$$

Choose $m_{\mu}(x) \in\{-1,0,1\}$ with $\frac{2 \pi m_{\mu}(x)}{3}$ closest to $\phi_{\mu}(x)$

Simulation Details

- We use the overlap operator, which has a lattice-deformed version of chiral symmetry, leading to greater sensitivity to topological effects
- Results calculated on $5020^{3} \times 40$ gauge-field configurations using Lus̈cher-Weisz $\mathcal{O}\left(a^{2}\right)$ mean-field improved action with a lattice spacing of 0.125 fm

Simulation Details

- We use the overlap operator, which has a lattice-deformed version of chiral symmetry, leading to greater sensitivity to topological effects
- Results calculated on $5020^{3} \times 40$ gauge-field configurations using Lus̈cher-Weisz $\mathcal{O}\left(a^{2}\right)$ mean-field improved action with a lattice spacing of 0.125 fm

MCG-fixed phases

Identifying Centre Vortices on the Lattice

3 sets of configurations:

- Untouched configurations

- Vortex-only configurations

$$
\begin{equation*}
Z_{\mu}(x)=\exp \left[\frac{2 \pi i}{3} m_{\mu}(x)\right] \mathrm{I} \tag{6}
\end{equation*}
$$

- Vortex removed configurations

$$
\begin{equation*}
R_{\mu}(x)=Z_{\mu}^{\dagger}(x) U_{\mu}^{\Omega}(x) \tag{7}
\end{equation*}
$$

Identifying Centre Vortices on the Lattice

3 sets of configurations:

- Untouched configurations

$$
\begin{equation*}
U_{\mu}(x) \tag{5}
\end{equation*}
$$

- Vortex-only configurations

$$
Z_{\mu}(x)=\exp \left[\frac{2 \pi i}{3} m_{\mu}(x)\right] \mathrm{I}
$$

- Vortex removed configurations

$$
R_{\mu}(x)=Z_{\mu}(x) U_{\mu}^{\Omega}(x)
$$

Identifying Centre Vortices on the Lattice

3 sets of configurations:

- Untouched configurations

$$
\begin{equation*}
U_{\mu}(x) \tag{5}
\end{equation*}
$$

- Vortex-only configurations

$$
\begin{equation*}
Z_{\mu}(x)=\exp \left[\frac{2 \pi i}{3} m_{\mu}(x)\right] \mathrm{I} \tag{6}
\end{equation*}
$$

- Vortex removed configurations

$$
R_{\mu}(x)=Z_{\mu}^{\dagger}(x) U_{\mu}^{\Omega}(x)
$$

Identifying Centre Vortices on the Lattice

3 sets of configurations:

- Untouched configurations

$$
\begin{equation*}
U_{\mu}(x) \tag{5}
\end{equation*}
$$

- Vortex-only configurations

$$
\begin{equation*}
Z_{\mu}(x)=\exp \left[\frac{2 \pi i}{3} m_{\mu}(x)\right] \mathrm{I} \tag{6}
\end{equation*}
$$

- Vortex removed configurations

$$
\begin{equation*}
R_{\mu}(x)=Z_{\mu}^{\dagger}(x) U_{\mu}^{\Omega}(x) \tag{7}
\end{equation*}
$$

Centre Vortices and Confinement

From Bowman et al, Phys. Rev. D 84, 034501 (2011)

Previous Results Using an ASQTAD action

Performed with $m_{0} a=0.048, a=0.122$ on a $16^{3} \times 32$ lattice
From Bowman et al, Phys. Rev. D 84, 034501 (2011)

Previous Results Using an ASQTAD action

Performed with $m_{0} a=0.048, a=0.122$ on a $16^{3} \times 32$ lattice
From Bowman et al, Phys. Rev. D 84, 034501 (2011)

Overlap Quark Propagator

- Write momentum-space propagator as

$$
\begin{equation*}
S(p)=\frac{Z(p)}{i q+M(p)}, \tag{8}
\end{equation*}
$$

with q_{μ} the tree-level improved kinematic lattice momentum[1]

- Fixed to Landau gauge using a Fourier transform accelerated
algorithm [2] to the $\mathcal{O}\left(a^{2}\right)$ improved gauge-fixing functional [3].
[1] F.D.R. Bonnet et al, Phys. Rev. D 65,2002
[2] C.T.H. Davies et al. Phys. Rev. D 37, 1581 (1988)
[3] F.D.R. Bonnet et al, Austral. J. Phys. 52, 939 (1999)

Overlap Quark Propagator

- Write momentum-space propagator as

$$
\begin{equation*}
S(p)=\frac{Z(p)}{i q+M(p)}, \tag{8}
\end{equation*}
$$

with q_{μ} the tree-level improved kinematic lattice momentum[1]

- Fixed to Landau gauge using a Fourier transform accelerated algorithm [2] to the $\mathcal{O}\left(a^{2}\right)$ improved gauge-fixing functional [3].

```
[1] F.D.R. Bonnet et al, Phys. Rev. D 65,2002
[2] C.T.H. Davies et al. Phys. Rev. D 37, 1581 (1988)
[3] F.D.R. Bonnet et al, Austral. J. Phys. 52, 939 (1999)
```


Mass function on Untouched Configurations

Mass function with Vortex Removed Configurations

Renormalization function on UT Configurations

Renormalization function with VR Configurations

Quark Propagator on Vortex Removed Configurations

- ASQTAD propagator unable to show loss of dynamical mass generation with vortex removal
- Overlap propagator shows loss of dynamical mass generation coincident with vortex removal
- Loss of confinement on vortex removed backgrounds using overlap

Quark Propagator on Vortex Removed Configurations

- ASQTAD propagator unable to show loss of dynamical mass generation with vortex removal
- Overlap propagator shows loss of dynamical mass generation coincident with vortex removal
- Loss of confinement on vortex removed backgrounds using overlap

Quark Propagator on Vortex Removed Configurations

- ASQTAD propagator unable to show loss of dynamical mass generation with vortex removal
- Overlap propagator shows loss of dynamical mass generation coincident with vortex removal
- Loss of confinement on vortex removed backgrounds using overlap

Mass function on Vortex Only Configurations

Renormalization function on VO Configurations

The story so far...

- Vortex-only backgrounds cannot reproduce dynamical mass generation
- Vortex-only backgrounds not trivial; evidence of confinement
- The question: what information about the original configurations do vortex-only configurations retain?

The story so far...

- Vortex-only backgrounds cannot reproduce dynamical mass generation
- Vortex-only backgrounds not trivial; evidence of confinement
- The question: what information about the original configurations do vortex-only configurations retain?

The story so far...

- Vortex-only backgrounds cannot reproduce dynamical mass generation
- Vortex-only backgrounds not trivial; evidence of confinement
- The question: what information about the original configurations do vortex-only configurations retain?

Cooling

- Vortex-only configurations consist only of center elements \Rightarrow high action
- We will perform cooling on vortex-only configurations
- Cooling is performed using an $\mathcal{O}\left(a^{4}\right)$-three-loop improved action, and the topological charge density is calculated using an $\mathcal{O}\left(a^{4}\right)$-five-loop improved definition of the field-strength tensor.

Cooling

- Vortex-only configurations consist only of center elements \Rightarrow high action
- We will perform cooling on vortex-only configurations
- Cooling is performed using an $\mathcal{O}\left(a^{4}\right)$-three-loop improved action, and the topological charge density is calculated using an $\mathcal{O}\left(a^{4}\right)$-five-loop improved definition of the field-strength tensor.

Cooling

- Vortex-only configurations consist only of center elements \Rightarrow high action
- We will perform cooling on vortex-only configurations
- Cooling is performed using an $\mathcal{O}\left(a^{4}\right)$-three-loop improved action, and the topological charge density is calculated using an $\mathcal{O}\left(a^{4}\right)$-five-loop improved definition of the field-strength tensor.

Untouched Configurations with Cooling

Untouched Configurations with Cooling

Vortex Only Configurations with Cooling

Vortex Only Configurations with Cooling

40 sweep comparison

Mass function with cooling

- Under a UV filter, the overlap mass function retains its form qualitatively, with some loss of dynamical mass generation[1]

[1] D. T, W. Kamleh, D. Leinweber and D. S. Roberts, Phys. Rev. D 88, 034501 (2013) [arXiv:1306. 3283 [hep-lat]].

Renormalization function with cooling

Mass function with cooling

Mass function with cooling

Renormalization function with cooling

Renormalization function with cooling

Mass function with cooling

Renormalization function with cooling

Mass function with cooling

Renormalization function with cooling

Conclusion

- Shown for the first time removal of centre vortices coincident with loss of dynamical mass generation
- A centre vortex background alone does not support dynamical mass generation, but shows evidence of confinement
- Dynamical mass generation exists on vortex only configurations after cooling

Conclusion

- Shown for the first time removal of centre vortices coincident with loss of dynamical mass generation
- A centre vortex background alone does not support dynamical mass generation, but shows evidence of confinement
- Dynamical mass generation exists on vortex only configurations after cooling

Conclusion

- Shown for the first time removal of centre vortices coincident with loss of dynamical mass generation
- A centre vortex background alone does not support dynamical mass generation, but shows evidence of confinement
- Dynamical mass generation exists on vortex only configurations after cooling

Additional Slides

Preconditioning Landau-gauge fixing

MCG fixing

- Wish to maximise the local quantity

$$
\begin{equation*}
R_{x}=\sum_{\mu}\left|\operatorname{Tr}\left\{G(x) U_{\mu}(x)\right\}\right|^{2}+\sum_{\mu}\left|\operatorname{Tr}\left\{U_{\mu}(x-\hat{\mu}) G^{\dagger}(x)\right\}\right|^{2} \tag{9}
\end{equation*}
$$

- Use an $\operatorname{SU}(2)$ matrix $g=g_{4} \mathrm{I}-i g_{i} \sigma_{i}$ embedded in one of the 3 $S U(2)$ subgroups of $S U(3)$
- Can be re-written as

$$
R_{x}=g_{i} A_{i j} g_{j}+g_{i} b_{i}+c,
$$

with A real, symmetric 4×4 matrix, b a real 4 -vector, c a real constant.

Method of A. Montero, Phys. Lett. B 467, 106 (1999)

MCG fixing

- Wish to maximise the local quantity

$$
\begin{equation*}
R_{x}=\sum_{\mu}\left|\operatorname{Tr}\left\{G(x) U_{\mu}(x)\right\}\right|^{2}+\sum_{\mu}\left|\operatorname{Tr}\left\{U_{\mu}(x-\hat{\mu}) G^{\dagger}(x)\right\}\right|^{2} \tag{9}
\end{equation*}
$$

- Use an $S U(2)$ matrix $g=g_{4} \mathrm{I}-i g_{i} \sigma_{i}$ embedded in one of the 3 $S U(2)$ subgroups of $S U(3)$
- Can be re-written as
with A real, symmetric 4×4 matrix, b a real 4 -vector, c a real
constant.
Method of A. Montero, Phys. Lett. B 467, 106 (1999)

MCG fixing

- Wish to maximise the local quantity

$$
\begin{equation*}
R_{x}=\sum_{\mu}\left|\operatorname{Tr}\left\{G(x) U_{\mu}(x)\right\}\right|^{2}+\sum_{\mu}\left|\operatorname{Tr}\left\{U_{\mu}(x-\hat{\mu}) G^{\dagger}(x)\right\}\right|^{2} \tag{9}
\end{equation*}
$$

- Use an $S U(2)$ matrix $g=g_{4} \mathrm{I}-i g_{i} \sigma_{i}$ embedded in one of the 3 $S U(2)$ subgroups of $S U(3)$
- Can be re-written as

$$
\begin{equation*}
R_{x}=g_{i} A_{i j} g_{j}+g_{i} b_{i}+c \tag{10}
\end{equation*}
$$

with A real, symmetric 4×4 matrix, b a real 4 -vector, c a real constant.

Lower Bare Masses

Lower Bare Masses

