Results on the disconnected contributions for hadron structure

Alejandro Vaquero
Computational-based Science and Technology Research Center (CaSToRC) at The Cyprus Institute In collaboration with: Constantia Alexandrou, CaSToRC and University of Cyprus Giannis Koutsou, CaSToRC at The Cyprus Institute
Kyriacos Hadjiyiannakou, University of Cyprus
Karl Jansen, DESY, NIC
Vincent Drach, CP3 Origins \& DIAS, University of Southern Denmark

June $24^{\text {th }}, 2014$

Outline

- Disconnected contributions
- The Truncated Solver Method (TSM)
- The one-end trick
- Results
- Conclusions
- Future work

P The Cyprus

Disconnected contributions

- Closed fermion loops in form factors
- Expensive to compute
- In flavor-non-singlets they are small or zero
- Very important in other cases
- Flavor singlets
- Pure disconnected quantities
- High precision computations
- Large effort to address this problem
$L(x)=\operatorname{Tr}[\Gamma G(x ; x)]$

Disconnected contributions

- Require the all-to-all or an estimation of the diagonal of the propagator (probing)
- Exact computation unfeasible nowadays
- Extremely difficult problem that requires large efforts and new ideas
- Combination of computational power and algorithms can give results
- GPUs yield large computer power
- On the algorithmic side
- Stochastic estimation of the inverse matrix
- Variance reduction with Truncated Solver Method (TSM)
- Special variance reduction with the one-end trick

The Truncated Solver Method

- In the inversion for an stochastic estimation, $M\left|s_{j}\right\rangle=\left|\eta_{j}\right\rangle$ exactly, we truncate the solver at $n_{L P}$

Bali, Collins, Schäffer 2007

- Introduces a bias we can correct stochastically

$$
M_{E}^{-1}:=\frac{1}{N_{H P}} \sum_{j=1}^{N_{H P}}\left(\left|s_{j}\right\rangle\left\langle\left.\eta_{j}\right|_{H P}-\mid s_{j}\right\rangle\left\langle\left.\eta_{j}\right|_{L P}\right)+\frac{1}{N_{L P}} \sum_{j=N_{H P}+1}^{N_{H P}+N_{L P}}\left|s_{j}\right\rangle\left\langle\left.\eta_{j}\right|_{L P}\right.\right.
$$

- If M is properly conditioned, small correction, we need only a few $N_{H P}$
- Error should decrease essentially as $1 / \sqrt{N_{L P}}$
- Requires loop-dependent fine-tuning of $n_{L P}$ and $\frac{N_{L P}}{N_{H P}}$

The one-end trick

" General trick that reduces variance, usually applied to 2pt

Foster, Michael 1998; McNeile, Michael 2006

- In tmQCD, we can apply it as well to disconnected diagrams
- The difference/sum of propagators in the twisted basis is

$$
\begin{aligned}
& \sum X\left(M_{u}^{-1}-M_{d}^{-1}\right)=-2 i \mu \sum_{r}\left\langle s^{\dagger} X \gamma_{5} s\right\rangle_{r} \\
& \sum X\left(M_{u}^{-1}+M_{d}^{-1}\right)=2 \sum_{r}\left\langle s^{\dagger} \gamma_{5} X \gamma_{5} D_{W} s\right\rangle_{r}
\end{aligned}
$$

- Errors are considerably reduced
- The μ factor suppresses the noise
- The volume sum enhances statistics
- Improves signal-to-noise ratio from $\left(\frac{1}{\sqrt{V}}\right)$ to $O(1)$

Our ensemble

Name	B55.32
Volume	$32^{3} \times 64$
$a(\mathrm{fm})$	0.0823
$m_{\pi}(\mathrm{MeV})$	371.6
$m_{\pi} L$	4.97
$m_{s}(\mathrm{MeV})$	$92.4(6)(2.0)$
$m_{c}(\mathrm{MeV})$	$1186.0(4.6)$
Confs	4698
Flavors	$2+1+1$

Baron et al. ETMC 2010

- We calculated disconnected loops with an arbitrary gamma structure
- Also we included contractions with a covariant derivative
- First time such a large high precision study of disconnected has been attempted

Results: Nucleon σ-term light

- Describes the scalar light content of the nucleon
- Important for dark matter searches through Higgs interaction
- Used 2298 confs with 16 source positions $\longrightarrow 147072$ measurements
- Excited states appear, long source sink separations required
- Disconnected value represents $\approx 10 \%$ of the total value

Results: Nucleon σ-term strange

- Describes the strange content of the nucleon
- Statistics 147072 measurements
- Excited states appear, long source sink separations required
- Pure disconnected quantity

Results: Other particles σ-terms

- Statistics 4644 confs $\times 2$ directions \times channels
- Channels vary from particle to particle
- First time the disconnected σ-term has been computed for such a range or particles
- All the particles receive contributions from the disconnected

Results: Nucleon g_{A} light

- Nucleon spin fraction carried by the light quarks
- Strongly motivated by the proton spin crisis
- Statistics 147072 measurements
- Less contaminated than σ-terms
- Disconnected value represents $\approx 10 \%$ of the total value

Results: Nucleon g_{A} strange

- Nucleon spin fraction carried by the strange quark
- Statistics 147072 measurements
- Pure disconnected quantity

Results: Other baryons g_{A}

- Statistics 4644 confs $\times 2$ directions \times channels
- Channels vary from particle to particle
- First time g_{A} disconnected is calculated for all these particles, and it's non-zero for all of them

Results: Nucleon g_{T} light and strange

- Gives information about the strength of the coupling of the particle to tensor operators
- Statistics 147072 measurements
- For the light, is a small correction $\approx 1 \%$
- The strange quantity is pure disconnected

Results: Nucleon $\langle x\rangle_{u+d},\langle x\rangle_{s}$ and $\langle x\rangle_{\Delta u+\Delta d}$

- $\langle x\rangle_{q}$ Gives information about the fraction of nucleon momentum carried by the quark q
- $\langle x\rangle_{\Delta q}$ is the nucleon helicity fraction carried by q
- Statistics 147072 measurements
- For the light, the disconnected part represents a $\approx 2-4 \%$ correction
- The strange quantity is pure disconnected

Results: Nucleon electromagnetic form factors

- Can be used to extract information about the distribution of the u - d quarks inside the nucleon
- Statistics 147072 measurements
- Few percent correction to the connected part

Conclusions

- We achieved high precision results for disconnected diagrams
- First time such a broad study has been carried out
- We calculated ALL local and one-derivative insertions in a single run
- Extremely difficult problem which requires a large effort
- Unprecedented computer power with GPUs
- Huge statistics (≈ 150000 for the nucleon)
- State-of-the-art methods
- We can aim to remove the systematics for many quantities

Future work

- Currently working on high-statistics studies of other ensembles
- Plan to tackle the physical point
- Twisted-clover regularization included in QUDA
- Unfortunately our tests reveal that TSM alone is not enough for such low-masses
- Requires change of strategy
- Exact deflation to remove the low eigenmodes
- Probing, hierarchical probing

This presentation has been funded by the Research Promotion Fundation under project ПРОミЕへKYミH／NEO $/ 0609 / 16$

Research Promotion Foundation

Tuning the physical point

- M not properly conditioned at the physical point, $n_{L P}$ must be revised
- We write the variance of the loop as

$$
\sigma^{2}=\frac{f_{H P}\left(n_{L P}\right)}{N_{H P}}+\frac{f_{L P}\left(n_{L P}\right)}{N_{L P}}
$$

- Try to minimize the variance at fixed cost (C)

$$
C=N_{H P} \times n_{H P}+N_{L P} \times n_{L P}
$$

- Try to minimize the variance at fixed cost (C)
- We solve for $n_{L P}$ and $\frac{N_{L P}}{N_{H P}}$

Tuning the physical point

- B55 ensemble
- $n_{H P} \approx 100 n_{L P}$
- $\rho_{L P} \approx 10^{-2}$
- $N_{H P}=24$

- Physical point
- $n_{H P} \approx 4 n_{L P}$
- $\rho_{L P} \approx 10^{-6}$
- $N_{H P}=4$
- TSM not efficient for our regularization (twisted mass + clover) at the physical point

