Multi-channel 1 to 2 matrix elements

 in finite volume

MOTIVATION

Many interesting quantities to compute with LQCD which involve multiple hadrons in initial/final state
$K \rightarrow \pi \pi$
$B \rightarrow K^{*} \ell^{+} \ell^{-} \rightarrow K \pi \ell^{+} \ell^{-}$SM/BSM
$p p \rightarrow d e^{+} \nu_{e}$
"calibrate the sun"
$\gamma \pi \rightarrow \pi \pi$
$\gamma N \rightarrow \Delta \rightarrow N \pi$

MOTIVATION

Unlike the single hadron ground state spectrum or matrix elements, NO simple relation between finite-volume (FV) matrixelements and infinite-volume ($\infty \mathrm{V}$) transition amplitudes

We were motivated to determine a "master formula" with as few approximations as possible: in this work - focus on transition form-factors between (pseudo)-scalar states

MOTIVATION

$$
\begin{aligned}
\left.\left|\left\langle E_{\Lambda_{f}, n_{f}} \mathbf{P}_{f} ; L\right| \tilde{\mathcal{J}}_{\Lambda \mu}^{[J P,|\lambda \lambda|]}\left(0, \mathbf{P}_{f}-\mathbf{P}_{i}\right)\right| E_{\Lambda_{i}, 0} \mathbf{P}_{i} ; L\right\rangle \mid & =\frac{1}{\sqrt{2 E_{\Lambda_{i}, 0}}} \sqrt{\left[\mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}^{\dagger} \mathcal{R}_{\Lambda_{f}, n_{f}} \mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}\right]} \\
\left\langle a, P_{f}, J m_{J} ; \infty\right| \tilde{\mathcal{J}}_{\Lambda \mu}^{[J, P,|\lambda|]}(0, \mathbf{Q} ; \infty)\left|P_{i} ; \infty\right\rangle & =\left[\mathcal{A}_{\Lambda \mu ; J m_{J}}\right]_{a}(2 \pi)^{3} \delta^{3}\left(\mathbf{P}_{f}-\mathbf{P}_{i}-\mathbf{Q}\right)
\end{aligned}
$$

master formula: finite-volume matrix element of a current that

- can inject arbitrary four-momentum and angular momentum
- includes all inelastic coupled channels, "a"
- incorporates partial-wave mixing (from box and/or physics)
\mathcal{A} column vector in angular-momentum/channel space
Λ_{f} denotes the projection onto the finite volume irrep. Λ row μ
$\mathcal{R}_{\Lambda_{f}, n_{f}}$ matrix: related to the residues of FV two-particle propagators of state n_{f}

1 AND 2 HADRON CORRELATORS

$$
C^{(1)}\left(x_{0}-y_{0}, \mathbf{k}\right) \equiv\langle 0| \varphi\left(x_{0}, \mathbf{k}\right) \varphi^{\dagger}\left(y_{0},-\mathbf{k}\right)|0\rangle
$$

$$
\left.=e^{-E_{k}^{(1)}\left(x_{0}-y_{0}\right)}|\langle 0| \varphi(0, \mathbf{k})| E^{(1)} \mathbf{k} ; L\right\rangle\left.\right|^{2}+\mathcal{O}\left(L^{3} \frac{e^{-E_{3, t h}^{(1)}\left(x_{0}-y_{0}\right)}}{E_{3, t h}^{(1)}}\right),
$$

$$
=-
$$

$$
-\quad-\quad-1 \mathrm{PI}-+1 \mathrm{PI}-1 \mathrm{PI}-+
$$

$$
-(1 \mathrm{PI})=++\cdots
$$

$E_{3, \text { th }}$

1 AND 2 HADRON CORRELATORS

$C_{\Lambda \mu}^{(2)}\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\Lambda \mu}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle$

$$
\mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P},|\mathbf{P}-\mathbf{k}|,|\mathbf{k}|\right)=\sum_{R \in \mathrm{LG}(\mathbf{P})} \mathcal{C}(\mathbf{P} \Lambda \mu ; R \mathbf{k} ; R(\mathbf{P}-\mathbf{k})) \varphi\left(x_{0}, R \mathbf{k}\right) \tilde{\varphi}\left(x_{0}, R(\mathbf{P}-\mathbf{k})\right)
$$

R element of $\mathrm{LG}(\mathbf{P})$, little group of rotations leaving \mathbf{P} invariant

$$
\mathcal{C}(\mathbf{P} \Lambda \mu ; R \mathbf{k} ; R(\mathbf{P}-\mathbf{k})) \equiv\left\langle\Lambda(\mathbf{P}), \mu \mid \Lambda_{1}\left(\{\mathbf{P}-\mathbf{k}\}_{\mathbf{P}}\right), R(\mathbf{P}-\mathbf{k}) ; \Lambda_{2}\left(\{\mathbf{k}\}_{\mathbf{P}}\right), R \mathbf{k}\right\rangle
$$

projection onto Λ
$\operatorname{eg} \mathcal{O}_{\mathbb{A}_{\mathbf{1}}^{+}}\left(x_{0}, \mathbf{0}\right)=\frac{\sigma}{\sqrt{6}} \sum_{\hat{i}=\{\hat{x}, \hat{y}, \hat{\hat{z}}\}}\left[\varphi\left(x_{0}, q_{(1)} \hat{\mathbf{i}} \tilde{\varphi}\left(x_{0},-q_{(1)} \hat{\mathbf{i}}\right)+\varphi\left(x_{0},-q_{(1)} \hat{\mathbf{i}} \tilde{\varphi}\left(x_{0}, q_{(1)} \hat{\mathbf{i}}\right)\right]\right.\right.$

$$
q_{(1)}=\frac{2 \pi}{L}
$$

$\mathcal{O}_{\mathbb{A}_{1}}\left(x_{0}, q_{(1)} \hat{\mathbf{z}}\right)=\frac{1}{2} \sum_{\hat{i}=\{\hat{x}, \hat{y}\}}\left[\varphi\left(x_{0}, q_{(1)} \hat{\mathbf{i}}\right) \tilde{\varphi}\left(x_{0},-q_{(1)}(\hat{\mathbf{z}}-\hat{\mathbf{i}})\right)+\varphi\left(x_{0},-q_{(1)} \hat{\mathbf{i}}\right) \tilde{\varphi}\left(x_{0}, q_{(1)}(\hat{\mathbf{z}}+\hat{\mathbf{i}})\right)\right]$

1 AND 2 HADRONS

$$
C_{\Lambda \mu}^{(2)}\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\Lambda \mu}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle \underset{\text { Nucl.Phys. } \mathbf{B 7 2 7}(\mathbf{2 0 0 5})}{\text { Kim, Sachrajda and Sharpe }}
$$

$$
\int \frac{d P_{0}}{2 \pi} \frac{d k_{0}}{2 \pi} e^{i P_{0}\left(x_{0}-y_{0}\right)}\left\{\begin{array}{l}
P-k \\
=-\quad+\cdots
\end{array}\right\}
$$

The integration over k_{0} puts one hadron on-shell:
The integration over P_{0} can not be performed until non-perturbatively summing over all diagrams

1 AND 2 HADRONS

$$
\begin{gathered}
\left.C_{\Lambda \mu}^{(2)}\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\Lambda \mu}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle \begin{array}{l}
\begin{array}{r}
\text { Kim, Sachrajda and Sharpe } \\
\text { Nucl.Phys. B727 (2005) }
\end{array} \\
E_{\text {free }}=\omega_{\vec{k}}+\omega_{\vec{P}-\vec{k}}
\end{array}\right\} \begin{array}{l}
\left\{i P_{0}-\omega_{k}, \vec{P}-\vec{k}\right\} \\
\left\{\omega_{k}, \vec{k}\right\}
\end{array} e^{i P_{0}\left(x_{0}-y_{0}\right)} \begin{array}{l}
\text { Bethe-Salpeter Kernel: } \\
\text { explicit dependence upon } \\
\text { off-shell scattering }
\end{array}
\end{gathered}
$$

Related to the K-matrix Real part of inverse scattering amplitude

1 AND 2 HADRONS

Kim, Sachrajda and Sharpe
Nucl.Phys. B727 (2005)

K-matrix
differs from infinite volume K-matrix only by terms exponentially suppressed by $m \pi$ L

1 AND 2 HADRONS

$$
\begin{aligned}
& C_{\Lambda \mu}^{(2)}\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\Lambda \mu}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle \begin{array}{l}
\text { Kim, Sachrajda and Sharpe } \\
\text { Nucl.Phys. } \mathbf{B 7 2 7}(\text { (2005 })
\end{array} \\
& \int \frac{d P_{0}}{2 \pi} e^{i P_{0}\left(x_{0}-y_{0}\right)}\{=-+=-0=+\cdots=-\cdots\}
\end{aligned}
$$ and feel the boundary of the box

power-law volume dependence
(Lüscher)

1 AND 2 HADRONS

$$
C_{\Lambda \mu}^{(2)}\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\Lambda \mu}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle
$$

Kim, Sachrajda and Sharpe
Nucl.Phys. B727 (2005)

Poles of this infinite series lead to quantization condition that determines spectrum of interacting system Hansen and Sharpe PRD 86 (2012) Briceño and Davoudi PRD 88 (2013)

$$
\operatorname{det}\left[\mathbb{M}\left(E_{n}\right)\right]=\operatorname{det}\left[\mathbb{K}\left(E_{n}\right)+\left(\mathbb{F}^{V}\left(E_{n}\right)\right)^{-1}\right]=0
$$

If we only cared about the spectrum and scattering - we would be done this is a generalization of the Lüscher formula relating finite-volume energy levels to infinite volume scattering phase shifts

1 AND 2 HADRONS

$$
C_{\Lambda \mu}^{(2)}\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\Lambda \mu}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle
$$

Kim, Sachrajda and Sharpe
Nucl.Phys. B727 (2005)

For our work - we also need to know the residues of the poles

$$
R_{\Lambda, n}=\left.\operatorname{adj}\left[\mathbb{M}\left(P_{0, M}\right)\right] \operatorname{tr}\left[\operatorname{adj}\left[\mathbb{M}\left(P_{0, M}\right)\right] \frac{\partial \mathbb{M}\left(P_{0, M}\right)}{\partial P_{0, M}}\right]^{-1}\right|_{P_{0, M}=E_{\Lambda, n}}
$$

adjugate of a matrix: $\frac{1}{\mathbb{M}\left(P_{0, M}\right)} \equiv \frac{1}{\operatorname{det}\left[\mathbb{M}\left(P_{0, M}\right)\right]} \operatorname{adj}\left[\mathbb{M}\left(P_{0, M}\right)\right]$
diverges at eigen-energies

finite at eigen-energies

1 AND 2 HADRONS

$$
C_{\Lambda \mu}^{(2)}\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\Lambda \mu}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle
$$

Kim, Sachrajda and Sharpe
Nucl.Phys. B727 (2005)

$$
=L^{3} \sum_{n} e^{-E_{\Lambda, n}\left(x_{0}-y_{0}\right)} V_{\mathcal{O}, \Lambda, n}^{\dagger} R_{\Lambda, n} V_{\mathcal{O}, \Lambda, n}
$$

A vector in angular momentum and open channels; encodes off-shell artifacts

Residue of two-particle propagator

1 AND 2 HADRONS

$$
C_{\Lambda \mu}^{(2)}\left(x_{0}-y_{0}, \mathbf{P}\right)=\langle 0| \mathcal{O}_{\Lambda \mu}\left(x_{0}, \mathbf{P}\right) \mathcal{O}_{\Lambda \mu}^{\dagger}\left(y_{0},-\mathbf{P}\right)|0\rangle \underset{\text { Nucl.Phys. B727 (2005) }}{\text { Kim, Sachrajda and Sharpe }}
$$

generalize to coupled channels

1 AND 2 HADRONS

for very nice example with coupled channels, see talk by David Wilson

Monday: 15:35 Resonances in π-K scattering
see also Dudek, Edwards, Thomas and Wilson
arXiv:1406.4158

3 POINT CORRELATION FUNCTION

The construction of the finite-volume matrix element follows very closely the construction of the two-hadron correlation

$$
C_{\Lambda_{f} \mu_{f} ; \Lambda \mu}^{(1 \rightarrow 2)}\left(x_{f, 0}-y_{0} ; y_{0}-x_{i, 0}\right)=\langle 0| \mathcal{O}_{\Lambda_{f} \mu_{f}}\left(x_{f, 0}, \mathbf{P}_{f}\right) \tilde{\mathcal{J}}_{\Lambda \mu}^{[J, P,|\lambda|]}\left(y_{0}, \mathbf{Q}\right) \varphi^{\dagger}\left(x_{i, 0},-\mathbf{P}_{i}\right)|0\rangle
$$

Interpolating field optimized for two-hadron state in definite irrep.

Interpolating field optimized for one-hadron state

Current subduced onto the Λ irrep. of O_{h}
see Thomas, Edwards and Dudek Phys.Rev. D85 (2012)

3 POINT CORRELATION FUNCTION

$$
C_{\Lambda_{f} \mu_{f} ; \Lambda \mu}^{(1 \rightarrow 2)}\left(x_{f, 0}-y_{0} ; y_{0}-x_{i, 0}\right)=\langle 0| \mathcal{O}_{\Lambda_{f} \mu_{f}}\left(x_{f, 0}, \mathbf{P}_{f}\right) \tilde{\mathcal{J}}_{\Lambda \mu}^{[J, P,|\lambda|]}\left(y_{0}, \mathbf{Q}\right) \varphi^{\dagger}\left(x_{i, 0},-\mathbf{P}_{i}\right)|0\rangle
$$

$\int \frac{d P_{f, 0}}{2 \pi} \frac{d P_{f, 0}}{2 \pi} e^{i P_{i, 0}\left(x_{f, 0}-y_{0}\right)} e^{i P_{f, 0}\left(y_{0}-x_{i, 0}\right)}\left\{\begin{array}{c}2\end{array}\right\}$
LO transition amplitude:

Full transition amplitude: Similar to K-matrix

3 POINT CORRELATION FUNCTION

$$
C_{\Lambda_{f} \mu_{f} ; \Lambda \mu}^{(1 \rightarrow 2)}\left(x_{f, 0}-y_{0} ; y_{0}-x_{i, 0}\right)=\langle 0| \mathcal{O}_{\Lambda_{f} \mu_{f}}\left(x_{f, 0}, \mathbf{P}_{f}\right) \tilde{\mathcal{J}}_{\Lambda \mu}^{[J, P,|\lambda|]}\left(y_{0}, \mathbf{Q}\right) \varphi^{\dagger}\left(x_{i, 0},-\mathbf{P}_{i}\right)|0\rangle
$$

$$
\int \frac{d P_{f, 0}}{2 \pi} \frac{d P_{f, 0}}{2 \pi} e^{i P_{i, 0}\left(x_{f, 0}-y_{0}\right)} e^{i P_{f, 0}\left(y_{0}-x_{i, 0}\right)}\left\{{ }^{2}+\cdots\right\}
$$

$$
\text { (A) }=
$$

Similar to K-matrix

3 POINT CORRELATION FUNCTION

$$
\begin{aligned}
& C_{\Lambda_{f} \mu_{f: \Lambda \mu}}^{(1 \rightarrow 2)}\left(x_{f, 0}-y_{0} ; y_{0}-x_{i, 0}\right)=\langle 0| \mathcal{O}_{\Lambda_{f} \mu_{f}}\left(x_{f, 0}, \mathbf{P}_{f}\right) \tilde{\mathcal{J}}_{\Lambda \mu}^{[J P,|\lambda|]}\left(y_{0}, \mathbf{Q}\right) \varphi^{\dagger}\left(x_{i, 0},-\mathbf{P}_{i}\right)|0\rangle \\
& \int \frac{d P_{f, 0}}{2 \pi} \frac{d P_{f, 0}}{2 \pi} e^{i P_{i, 0}\left(x_{f, 0}-y_{0}\right)} e^{i P_{f, 0}\left(y_{0}-x_{i, 0}\right)}\left\{\begin{array}{l}
\text { ? }
\end{array}\right. \text {, }
\end{aligned}
$$

Power-law volume corrections from onshell intermediate states

3 POINT CORRELATION FUNCTION

$$
\begin{aligned}
& C_{\Lambda_{f} \mu_{f} ; \Lambda \mu}^{(1 \rightarrow 2)}\left(x_{f, 0}-y_{0} ; y_{0}-x_{i, 0}\right)=\langle 0| \mathcal{O}_{\Lambda_{f} \mu_{f}}\left(x_{f, 0}, \mathbf{P}_{f}\right) \tilde{\mathcal{J}}_{\Lambda \mu}^{[J, P,|\lambda|]}\left(y_{0}, \mathbf{Q}\right) \varphi^{\dagger}\left(x_{i, 0},-\mathbf{P}_{i}\right)|0\rangle \\
& \int \frac{d P_{f, 0}}{2 \pi} \frac{d P_{f, 0}}{2 \pi} e^{i P_{i, 0}\left(x_{f, 0}-y_{0}\right)} e^{i P_{f, 0}\left(y_{0}-x_{i, 0}\right)} \\
& \quad=\left(\frac{e^{-\left(y_{0}-x_{i, 0}\right) E_{\Lambda_{i}, 0}}}{2 E_{\Lambda_{i}, 0}}\right) L^{3} \sum_{n_{f}} e^{-E_{\Lambda_{f}, n_{f}}\left(x_{f, 0}-y_{0}\right)} V_{\mathcal{O}, \Lambda_{f} \mu_{f}}^{\dagger} R_{\Lambda_{f}, n_{f}} \mathbb{H}_{\Lambda_{f}, n_{f} ; \Lambda \mu}
\end{aligned}
$$

to extract the matrix element of interest - one must take the ratio of the 3-point function to 1 - and 2-point correlation functions (using same interpolating operators)
"after a little work" (and simultaneously beer and coffee)
$\left.\left|\left\langle E_{\lambda_{f}, n_{f}} \mathbf{P}_{f}\right| \mathcal{J}(0, \mathbf{Q})\right| E_{\lambda_{i}, 0} \mathbf{P}_{i}\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\lambda_{i}, 0}}} \sqrt{\mathbb{H}_{\lambda_{f}, n_{f}}^{T} R_{\lambda_{f}, n_{f}} \mathbb{H}_{\lambda_{f}, n_{f}}}\right.$

3 POINT CORRELATION FUNCTION

$$
\left.\left|\left\langle E_{\lambda_{f}, n_{f}} \mathbf{P}_{f}\right| \mathcal{J}(0, \mathbf{Q})\right| E_{\lambda_{i}, 0} \mathbf{P}_{i}\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\lambda_{i}, 0}}} \sqrt{\mathbb{H}_{\lambda_{f}, n_{f}}^{T} R_{\lambda_{f}, n_{f}} \mathbb{H}_{\lambda_{f}, n_{f}}}\right.
$$

to get the master formula,

$$
\mathcal{A}=\mathbb{H}+\mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{H}+\mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{H}+\cdots=\left[\frac{1}{1-\mathbb{K}\left(i \mathbb{P}^{2} / 2\right)}\right] \mathbb{H}
$$

$$
=\left[\frac{1}{\mathbb{K}^{-1}-\left(i \mathbb{P}^{2} / 2\right)}\right] \mathbb{K}^{-1} \mathbb{H}=\mathcal{M} \mathbb{K}^{-1} \mathbb{H} .
$$

\mathbb{P} diagonal, kinematic

$$
\mathcal{R}_{\Lambda_{f}, n_{f}}=\left[\mathcal{M}^{-1 \dagger} \mathbb{K} R \mathbb{K} \mathcal{M}^{-1}\right]_{\Lambda_{f}, n_{f}}
$$ matrix

$\left.\left|\left\langle E_{\Lambda_{f}, n_{f}} \mathbf{P}_{f} ; L\right| \tilde{\mathcal{J}}_{\Lambda \mu}^{[J P,|\lambda|]}\left(0, \mathbf{P}_{f}-\mathbf{P}_{i}\right)\right| E_{\Lambda_{i}, 0} \mathbf{P}_{i} ; L\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\Lambda_{i}, 0}}} \sqrt{\left[\mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}^{\dagger} \mathcal{R}_{\Lambda_{f}, n_{f}} \mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}\right]}\right.$ master formula: finite-volume matrix element of a current that

- can inject arbitrary four-momentum and angular momentum
- includes all inelastic coupled channels, "a"
- incorporates partial-wave mixing (from box and/or physics)

3 POINT CORRELATION FUNCTION

$$
\left.\left|\left\langle E_{\lambda_{f}, n_{f}} \mathbf{P}_{f}\right| \mathcal{J}(0, \mathbf{Q})\right| E_{\lambda_{i}, 0} \mathbf{P}_{i}\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\lambda_{i}, 0}}} \sqrt{\mathbb{H}_{\lambda_{f}, n_{f}}^{T} R_{\lambda_{f}, n_{f}} \mathbb{H}_{\lambda_{f}, n_{f}}}\right.
$$

to get the master formula,

$$
\mathcal{A}=\mathbb{H}+\mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{H}+\mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{H}+\cdots=\left[\frac{1}{1-\mathbb{K}\left(i \mathbb{P}^{2} / 2\right)}\right] \mathbb{H}
$$

$$
=\left[\frac{1}{\mathbb{K}^{-1}-\left(i \mathbb{P}^{2} / 2\right)}\right] \mathbb{K}^{-1} \mathbb{H}=\mathcal{M} \mathbb{K}^{-1} \mathbb{H}
$$

\mathbb{P} diagonal, kinematic

$$
\mathcal{R}_{\Lambda_{f}, n_{f}}=\left[\mathcal{M}^{-1 \dagger} \mathbb{K} R \mathbb{K} \mathcal{M}^{-1}\right]_{\Lambda_{f}, n_{f}}
$$ matrix

$$
\left.\left|\left\langle E_{\Lambda_{f}, n_{f}} \mathbf{P}_{f} ; L\right| \tilde{\mathcal{J}}_{\Lambda \mu}^{[J, P,|\lambda|]}\left(0, \mathbf{P}_{f}-\mathbf{P}_{i}\right)\right| E_{\Lambda_{i}, 0} \mathbf{P}_{i} ; L\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\Lambda_{i}, 0}}} \sqrt{\left[\mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}^{\dagger} \mathcal{R}_{\Lambda_{f}, n_{f}} \mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}\right]}\right.
$$

Matrix-generalization of Lellouch-Lüscher

3 POINT CORRELATION FUNCTION

$$
\left.\left|\left\langle E_{\lambda_{f}, n_{f}} \mathbf{P}_{f}\right| \mathcal{J}(0, \mathbf{Q})\right| E_{\lambda_{i}, 0} \mathbf{P}_{i}\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\lambda_{i}, 0}}} \sqrt{\mathbb{H}_{\lambda_{f}, n_{f}}^{T} R_{\lambda_{f}, n_{f}} \mathbb{H}_{\lambda_{f, n}}}\right.
$$

to get the master formula,

$$
\mathcal{A}=\mathbb{H}+\mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{H}+\mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{K}\left(i \mathbb{P}^{2} / 2\right) \mathbb{H}+\cdots=\left[\frac{1}{1-\mathbb{K}\left(i \mathbb{P}^{2} / 2\right)}\right] \mathbb{H}
$$

$$
=\left[\frac{1}{\mathbb{K}^{-1}-\left(i \mathbb{P}^{2} / 2\right)}\right] \mathbb{K}^{-1} \mathbb{H}=\mathcal{M} \mathbb{K}^{-1} \mathbb{H} .
$$

$$
\mathcal{R}_{\Lambda_{f}, n_{f}}=\left[\mathcal{M}^{-1 \dagger} \mathbb{K} R \mathbb{K} \mathcal{M}^{-1}\right]_{\Lambda_{f}, n_{f}}
$$

\mathbb{P} diagonal, kinematic matrix

$$
\left.\left|\left\langle E_{\Lambda_{f}, n_{f}} \mathbf{P}_{f} ; L\right| \tilde{\mathcal{J}}_{\Lambda \mu}^{[J P,|\lambda|]}\left(0, \mathbf{P}_{f}-\mathbf{P}_{i}\right)\right| E_{\Lambda_{i}, 0} \mathbf{P}_{i} ; L\right\rangle \left\lvert\,=\frac{1}{\sqrt{2 E_{\Lambda_{i}, 0}}} \sqrt{\left[\mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}^{\dagger} \mathcal{R}_{\Lambda_{f}, n_{f}} \mathcal{A}_{\Lambda_{f}, n_{f} ; \Lambda \mu}\right]}\right.
$$

See talk by Christian Shultz Thur. 3:35
to go from these subduced infinitevolume transition amplitudes to back to $\mathrm{O}(3)$ symmetric amplitudes

3 POINT CORRELATION FUNCTION

$K \rightarrow \pi \pi$	Need to know phase shift well enough to control
Lellouch-Lüscher \quadderivative	
$\frac{\left\|\mathbb{H}_{S, n_{f}} \cos \delta_{S}\right\|^{2}}{\left.\left\|\left\langle\pi \pi, E_{n_{f}} \mathbf{P}, \Lambda_{f} \mu_{f} ; L\right\| \tilde{\mathcal{J}}_{\Lambda \mu}^{[0,-1,\|0\|]}(0, \mathbf{0})\right\| K, E_{K} \mathbf{P} ; L\right\rangle\left.\right\|^{2}}=\left.\frac{16 \pi E_{i} E_{n_{f}}^{*}}{q_{n_{f}}^{*} \xi} \frac{\partial\left(\delta_{S}+\phi_{00}^{\mathbf{d}}\right)}{\partial P_{0, M}}\right\|_{P_{0, M}=E_{n_{f}}}$	

Finite-Volume Matrix Element
$\left|\mathbb{H}_{S, n_{f}} \cos \delta_{S}\right|=\left|\mathcal{A}_{S, n_{f}}\right|$

Infinite-Volume Transition Amplitude

$$
\begin{aligned}
& q_{\Lambda, n}^{*} \cot \phi_{l m}^{\mathbf{d}}=-\frac{4 \pi}{q_{\Lambda, n}^{* l}} c_{l m}^{\mathbf{d}}\left(q_{\Lambda, n}^{* 2} ; L\right) \quad \text { pseudo-phase } \\
& \text { (Euler)-Reimann-zeta Function } \\
& c_{l m}^{\mathbf{d}}\left(k_{j}^{* 2} ; L\right)=\frac{\sqrt{4 \pi}}{\gamma L^{3}}\left(\frac{2 \pi}{L}\right)^{l-2} \mathcal{Z}_{l m}^{\mathbf{d}}\left[1 ;\left(k_{j}^{*} L / 2 \pi\right)^{2}\right], \quad \mathcal{Z}_{l m}^{\mathbf{d}}\left[s ; x^{2}\right]=\sum_{\mathbf{r} \in \mathcal{P}_{\mathbf{d}}} \frac{|\mathbf{r}|^{l} Y_{l, m}(\mathbf{r})}{\left(r^{2}-x^{2}\right)^{s}}
\end{aligned}
$$

3 POINT CORRELATION FUNCTION

$$
\gamma \pi \rightarrow \pi \pi
$$

lowest energy state is P-wave

See talk by Christian Shultz Thur. 3:35

$$
\begin{aligned}
& \frac{\left|\mathbb{H}_{\Lambda_{f} \mu_{f}, n_{f} ; \Lambda \mu} \cos \delta_{P}\right|^{2}}{\left.\left|\left\langle\pi \pi, E_{n_{f}} \mathbf{P}_{f}, \Lambda_{f} \mu_{f} ; L\right| \tilde{\mathcal{J}}_{\Lambda \mu}^{[1,-1,|\lambda|]}\left(0, \mathbf{P}_{f}-\mathbf{P}_{i}\right)\right| \pi, E_{i} \mathbf{P}_{i} ; L\right\rangle\left.\right|^{2}}=16 \pi E_{i} \frac{E_{n_{f}}}{q_{n_{f}}^{*} \xi} \sin ^{2} \delta_{P} \\
& \times {\left.\left[\csc ^{2} \delta_{P} \frac{\partial \delta_{P}}{\partial P_{0, M}}+\csc ^{2} \phi_{00}^{\mathbf{d}} \frac{\partial \phi_{00}^{\mathbf{d}}}{\partial P_{0, M}}+\sum_{m=0,2} \alpha_{2 m, \Lambda_{f}} \csc ^{2} \phi_{2 m}^{\mathbf{d}} \frac{\partial \phi_{2 m}^{\mathbf{d}}}{\partial P_{0, M}}\right]\right|_{P_{0, M}=E_{n_{f}}} }
\end{aligned}
$$

$\left|\mathbb{H}_{\Lambda_{f} \mu_{f}, n_{f} ; \Lambda \mu} \cos \delta_{P}\right|=\left|\mathcal{A}_{\Lambda_{f} \mu_{f}, n_{f} ; \Lambda \mu}\right|$

3 POINT CORRELATION FUNCTION

Comment on recent calculation of $B \rightarrow K^{*} \ell^{+} \ell^{-}$ Horgan, Liu, Meinel, Wingate: PRL 112 (2014)

$$
\text { PRD } 89 \text { (2014) }
$$

1. Calculation treated K^{*} as stable - need to use correct FV formalism - includes S-P wave mixing (this is all treated in our paper arXiv:1406.5965)
2. $\mathrm{I}=1 / 2 \mathrm{~K} \pi$ scattering has "quark disconnected" graphs: this means the staggered action will give rise to unitarity violating "haripin" interactions in the Schannel graphs, invalidating the Lüscher formalism for understanding the two-hadron spectrum

I believe the hairpin issue makes the calculation practically impossible - at least with our current understanding of scattering with PQ effects

CONCLUSIONS

we have extended the Lellouch-Lüscher method to determine a "master formula" describing the mapping between finitevolume matrix element calculations and the corresponding infinite volume transition amplitudes of a current that

- can inject arbitrary four-momentum and angular momentum
- includes all inelastic coupled channels
- incorporates partial-wave mixing (from box and/or physics)

This new formalism is very powerful and makes as few approximations as possible: it is model-independent, nonperturbative and valid below inelastic thresholds

THANKS

I would like to particularly thank my younger colleagues who "held my hand" as I learned how to think of these problems in this "modern" fashion

Raúl Briceño
Max Hansen

Thank You

