32nd International Symposium on Lattice Field Theory (Lattice 2014)

Contribution ID: 405

Type: Talk

Multi-channel 1 to 2 matrix elements in finite volume

Tuesday, 24 June 2014 17:10 (20 minutes)

We derive a model-independent expression for finite-volume matrix elements. Specifically, we present a relativistic, non-perturbative analysis of the matrix element of an external current between a one-scalar in-state and a two-scalar out-state. Our result, which is valid for energies below higher-particle inelastic thresholds, generalizes the Lellouch-Luscher formula in two ways: we allow the external current to inject arbitrary momentum into the system and we allow for the final state to be composed an arbitrary number of strongly coupled two-particle states with arbitrary partial waves (including partial-wave mixing induced by the volume). We also illustrate how our general result can be applied to some key examples, such as heavy meson decays and meson photo production.

Primary author: WALKER-LOUD, andre (W&M)

Co-authors: Mr HANSEN, Maxwell (University of Washington); BRICENO, Raul (JLab)

Presenter: WALKER-LOUD, andre (W&M)

Session Classification: Hadron spectroscopy and interaction

Track Classification: Hadron Spectroscopy and Interactions