
Testing Composite Higgs models
 on the lattice

Enrico Rinaldi

Physics Division,
Lawrence Livermore National Laboratory,
Livermore, CA

Lattice Strong Dynamics collaboration

Lattice 2014, 
Columbia University

This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344 and supported by the LLNL LDRD “Illuminating the Dark Universe with 

PetaFlops Supercomputing” 13-ERD-023. 

Computing support comes from the LLNL Institutional Computing Grand Challenge program. LLNL-PRES-656191



Lattice Strong Dynamics Collaboration

James Osborn

Rich Brower 
Michael Cheng 
Claudio Rebbi 
Oliver Witzel 

Evan Weinberg

Ethan Neil

Meifeng Lin

Evan Berkowitz 
Enrico Rinaldi 

Chris Schroeder 
Pavlos Vranas

Joe Kiskis

Tom Appelquist 
George Fleming 

Gennady Voronov

Mike Buchoff
2

Ethan Neil 
Sergey Syritsyn

David Schaich

Graham Kribs



The SM Higgs boson

• Higgs boson discovery in Run I at LHC 
➥ mH=125.5GeV

• Higgs boson decays to ➥Gauge bosons 
and leptons+quarks

• Signal strength measurements ➥ 
coupling constant measurements

• Run II at LHC ➥ deviations from SM 
couplings? NP resonances above 1TeV?

• SM description seems to be working 
but is not complete

CMS-PLB716(2012)
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Figure 1: The measured signal strengths for a Higgs boson of mass mH =125.5 GeV, normalised to the
SM expectations, for the individual final states and various combinations. The best-fit values are shown
by the solid vertical lines. The total ±1� uncertainties are indicated by green shaded bands, with the
individual contributions from the statistical uncertainty (top), the total (experimental and theoretical)
systematic uncertainty (middle), and the theory uncertainty (bottom) on the signal strength (from QCD
scale, PDF, and branching ratios) shown as superimposed error bars. The measurements are based on
Refs. [3, 5, 6], with the changes mentioned in the text.

Section 2. In the H ! ⌧⌧ channel, the ratio µVBF+VH/µggF+ttH has an infinite 1� upper bound, because
the signal is almost only observed in the VBF mode, hence the ggF denominator can be arbitrarily small.

To test the sensitivity to VBF production alone, the data are also fitted with the ratio µVBF/µggF+ttH .
In order not to influence the VBF measurement through the VH categories, the parameter µVH/µggF+ttH
is treated independently and profiled. A value of

µVBF/µggF+ttH = 1.4+0.5
�0.4 (stat) +0.4

�0.3 (sys)

is obtained from the combination of the four channels (Fig. 4). This result provides evidence at the 4.1�
level that a fraction of Higgs boson production occurs through VBF.
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The SM Higgs boson

• fine tuning of the EW scale

• triviality of the SM Higgs quartic coupling

• SM vacuum instability

• flavor problem

• neutrino masses

• dark matter candidates
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compositeness of the Higgs boson 



Composite Higgs models

• the Higgs boson is not an elementary scalar particle ➥ composite bound 
state of new strong dynamics

• Technicolor Higgs: 
✓ the new sector breaks the EW symmetry through a technifermion condensate
✓ the Higgs is identified with the lightest scalar excitation of the condensate
✓can be light due to interactions with SM particles (obtained from ETC dynamics) 

[Foadi et al., PRD87(095001)] [Di Chiara et al.,arxiv:1405.7154]

• Walking Technicolor Higgs:
✓walking coupling and large anomalous mass dimension γ≃1
✓the Higgs is identified with the technidilaton, from broken scale invariance  

[Yamawaki et al., PRL56(1986)] [Bando et al.,PLB178(1986)]

✓is naturally light thanks to its (pseudo-)NGB origin mHiggs

vEW
⇡ 0.5 =

m�p
NdF
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Lattice simulations
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Composite Higgs models

Can a light Higgs impostor hide in composite gauge models? Chik Him Wong
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Figure 2: Preliminary results on 323× 64 lattices at β = 3.20. (Top left) A typical non-singlet correlator
can be fitted well with non-oscillating a0 contribution and oscillating πSC contribution. (Top right) A typical
D̃(t) can be fitted well with a single mD. This can be identified as mf0 as explained in text. No oscillating
contribution is detectable within errors. (Bottom) Preliminary f0 masses at different fermion masses. Higher
statistics and more comprehensive analysis are required for a more robust extrapolation to the chiral limit.

fermions in the sextet representation of the SU(3) gauge group. The RHMC algorithm is employed.
For molecular dynamics time evolution we applied multiple time scales and the Omelyan integra-
tor. Fig. 2 shows the preliminary results at β ≡ 6/g2 = 3.20. There are 135 gauge configurations
separated by 20 MD time units. Autocorrelations are monitored by the time histories of effective
masses and correlators. The top left plot shows a typical non-singlet correlator, which can be fitted
well by the ansatz:

Cnon−singlet(t) = c0(cosh(ma0(T/2− t))+ (−)tc1 cosh(mπSC(T/2− t))) (3.1)

as expected. Here ma0 is the a0 mass, mπSC is the mass of the parity partner. Since the vev2 of
D(t) is irrelevant, we analyze the subtracted disconnected diagram D̃(t)≡D(t)−D(T/2)(top right
plot). Empirically no oscillation is detected within error. It can be fitted well with the ansatz:

D̃(t) = c0(cosh(mD(T/2− t))−1), (3.2)
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SU(3) Nf=2 sextet
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error is large. We also plot the effective mass of 2D(t)
without the projection, which does not have an oscillating
behavior. This means that the flavor symmetry breaking
between AπSC

(t) and Aπ
SC
(t) in Eq. (4) is small. The

effective mass plateau of 2D(t) is statistically consistent
with the one of 2D+(t)−C+(t) in the large time region.
Note that effective mass of −C+(t) is always larger than
the one of 2D(t) in our simulations, as shown in Fig. 1.
Since the plateau of 2D(t) appears at earlier time with
smaller error than the one of 2D+(t)−C+(t), we choose
2D(t) to extract mσ in all the parameters. The earlier
plateau suggests that the contribution of a0 tends to can-
cel with that from excited flavor-singlet scalar states in
2D(t). It should be noted that, because of the small mσ,
comparable to mπ, the exponential damping of D(t) is
slow, and this helps preventing a rapid degradation of
the signal-to-noise ratio.

We fit 2D(t) in the region t = 6–11 by a single cosh
form assuming only σ propagating in this region to obtain
mσ for all the parameters. The fit result on L = 36 at
mf = 0.015 is shown in Fig. 1. In this parameter it
is possible to fit 2D(t) with a longer fit range, while in
some parameters the effective mass of 2D(t) in the large
time region is unstable with large error in the current
statistics. Thus, we choose this fixed fit range in all the
parameters. In order to estimate the systematic error
coming from the fixed fit range, we carry out another fit
in a region at larger t than the fixed one, with the same
number of data points. An example of this fit is shown in
Fig. 1. We quote the difference between the two central
values as the systematic error.

The values of mσ and also mπ for all the parame-
ters are summarized in Table I. Figure 2 presents mσ

as function of mf together with mπ. These are our main
results. The data on the largest two volumes at each
mf , except for mf = 0.015, agree with each other, and
suggest that finite size effects are negligible in our statis-
tics. We find a clear signal that σ is as light as π for
all the fermion masses we simulate. This property is
distinctly different from the one in usual QCD, where
mσ is clearly larger than mπ [28, 29], while it is simi-
lar to the one in Nf = 12 QCD observed in our previous
study [11]. Thus, this might be regarded as a reflection of
the approximate scale symmetry in this theory, no mat-
ter whether the main scale symmetry breaking in the far
infrared comes from mf or mD, as we noted before. The
figure also shows that our simulation region is far from
heavy-fermion limit, because the vector meson mass ob-
tained from the (γiγ4⊗ξiξ4) operator, denoted by ρ(PV),
is clearly larger than mπ.

Although the accuracy of our data is not enough to
make a clear conclusion for a chiral extrapolation, we
shall report some results below. While in the previous
paper [10] we found that the data for mπ and Fπ, π de-
cay constant at each mf , are consistent with chiral per-
turbation theory (ChPT) in the region mf ≤ 0.04, the
updated data [30], tabulated in Table I, show consistency
with ChPT in a somewhat smaller region mf ≤ 0.03.
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FIG. 2: Mass of the flavor-singlet scalar mσ compared to the
mass of NG pion mπ as a function of the fermion mass mf .
Outer error represents the statistical and systematic uncer-
tainties added in quadrature, while inner error is only statis-
tical. Square symbols are slightly shifted for clarity. Mass of
vector meson with one standard deviation is expressed by full
boxes.

Thus, we shall use the lightest three data with the small-
est error at each mf , i.e., the two data on L = 36 and
the lightest data on L = 24, in the following analyses.
The validity of ChPT is intact even when the light

σ comparable with π is involved in the chirally broken
phase: the systematic power counting rule as a general-
ization of ChPT including σ as a dilaton was established
in Ref. [31] (“dilaton ChPT (DChPT)”) including com-
putation of the chiral log effects. At the leading order
we have m2

π = 4mf〈ψ̄ψ〉/F 2 (Gell-Mann-Oakes-Renner
relation) and

m2
σ = d0 + d1m

2
π , (5)

where d0 = m2
σ|mf=0 and d1 = (3 − γm)(1 + γm)/4 ·

(NfF 2)/F 2
σ , with γm being mass anomalous dimension in

the walking region, F and Fσ being the decay constants
of π and σ, respectively, in the chiral limit. (F/

√
2 corre-

sponds to 93 MeV for the usual QCD π.) In the following
fit, we ignore higher order terms including chiral log. We
plot m2

σ as a function of m2
π in Fig. 3. The extrapolation

to the chiral limit based on Eq. (5) gives a reasonable
χ2/d.o.f. = 0.27, with a tiny value in the chiral limit,
d0 = −0.019(13)( 3

20) where the first and second errors
are statistical and systematic, respectively. It agrees with
zero with 1.4 standard deviation and shows a consistency
with the NG nature of σ. The fit without the lightest
point (with single volume) gives a consistent result, show-
ing that finite size effects are not statistically relevant.
Although errors are large at this moment, it is very en-
couraging for obtaining a light technidilaton to be identi-
fied with a composite Higgs with mass 125 GeV, with the
value very close to F/

√
2 ' 123 GeV of the one-family

model with 4 weak-doublets, i.e., Nf = 8. The value
of F from our data is estimated as F = 0.0202(13)(5467),

LatKMI Coll. PRD89(111502)R

SU(3) Nf=8 fundamental

[see talk by R.Wong 2C for updates] [see talk by K.-i.Nagai 9C for updates]



Goldstone Higgs dynamics

• a composite Higgs can emerge as a scalar pseudo-NGB from breaking of a 
global symmetry in a new strong sector at the TeV scale

• phenomenologically interesting and well studied models are based on the 
breaking pattern SU(4)➜Sp(4) (equivalently SO(6)➜SO(5)) [Galloway et al., JHEP10(2010)89]

• a realization of this framework has been studied recently, showing how SU(4) 
can break to Sp(4) using a SU(2) gauge theory with 2 flavors in the 
fundamental representation [Cacciapaglia&Sannino, JHEP04(2014)111] 

✓ SU(4)/Sp(4) coset gives 5 NGBs ➥ 3 pseudoscalars and 2 scalars 
✓ different choices of the quark condensate can be used when embedding the strong sector with 

the EW sector
✓ interplay between the 2 scalars NGBs and the lightest excitation of the condensate depending on 

the vacuum alignment give different scenarios [talk by A.Hietanen 2C]



Higgs and dark matter candidates

• interest in this special theory is not limited to Higgs compositeness:

• models for composite DM have been recently studied based on this 
framework, without connection with EW symmetry breaking [Buckley&Neil, 
PRD87(043510)] 

• a model for dark nucleosynthesis based on the same strong sector now 
exists [Detmold et al., arxiv:1406.2276,arxiv:1406.4116] [talk by W.Detmold 8C] 

• for Higgs compositeness, it is important to determine the dynamical mass of 
the isosinglet scalar particle in the strong sector (before the EW embedding)
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study the isosinglet scalar channel on the lattice



Lattice simulations with FUEL

• FUEL (Framework for Unified Evolution of Lattices) it’s a lightweight and 
flexible wrapper for level 3 USQCD libraries with focus on lattice generation 
for BSM theories [https://github.com/jcosborn/qhmc]             [See J. Osborn’s talk in 1F] 

• capabilities to do arbitrary number of colors, dimensions and flavors

• Staggered fermion formulations, as well as Wilson ones are included

• use HMC to generate O(103) trajectories for SU(2) with Wilson plaquette 
gauge action and 2 Wilson fermions

• one coupling β=2.2, one volume 323×64, six bare fermion masses 
m0={-0.68,-0.70,-0.72,-0.735,-0.75,-0.755}



Glueball spectroscopy: operators

• eigenstates of the Hamiltonian are classified according to the 
irreducible representations of the cubic group

• suitable gauge-invariant operators must be constructed that 
respect the symmetries

• vacuum contributions must be subtracted in the scalar case

• improved operators are obtained by blocking and smearing 
algorithms Lucini, Rago, ER 

JHEP08(2010)
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J A1 A2 E T1 T2

0 1 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 1 0 1 1

4 1 0 1 1 1

Table 1. Subduced representations J ↓ GO of the octahedral group up to J = 4. This table
illustrates the spin content of the irreducible representations of GO in terms of the continuum J .

3 Extracting glueball masses

In this section we present the construction of our operators and we review the general

methodology for extracting glueball masses. While the standard variational procedure and

the construction of operators in irreducible representations of the cubic lattice group is well

known, this is, up to our knowledge, the first systematic attempt of inserting scattering

and torelon operators into the variational set, in order to rule out from the spectrum

contributions of these spurious states.

Symmetries of the lattice spectrum. At finite lattice spacing a the continuum rota-

tion group is not an exact symmetry of the system. The full continuum rotational symmetry

is dynamically restored only when a → 0. On the lattice, eigenstates of the Hamiltonian

have to fall into the irreducible representations of the octahedral point group GO, the sym-

metry group of the cube. The octahedral point group has 5 irreducible representations A1,

A2, E, T1 and T2 respectively with dimensions 1, 1, 2, 3, 3.

Since we are interested in the glueball spectrum of the gauge theory in the continuum,

we need to consider GO as a subgroup of the complete rotation group SO(3): irreducible

representations of SO(3) are decomposed in terms of those of GO. Irreducible representa-

tions of integer spin J in SO(3) restricted to GO are referred to as subduced representations

J ↓ GO. When considered as a representation of GO, the (2J +1) degeneracy of the contin-

uum spin J state is split onto different irreducible representations of GO. A simple example

of this kind of pattern is the spin 2 (tensor) glueball, whose 5 polarisations are seen on

the lattice as different states, 2 in the E and 3 in the T2 representation of GO. Due to

the breaking of continuum rotational symmetry on the lattice, the aforementioned pattern

of degeneracies is exact in the limit a → 0, but it is only approximate at finite a. Com-

paring the measured glueball spectrum with the expected pattern of degeneracy can give

information on the relevance of lattice artifacts.

Near the continuum limit, it is possible to identify the masses of spin J glueballs by

matching the patterns of degeneracies of the subduced representations J ↓ GO from the

degeneracy coefficients. We report these coefficients up to J = 4 in table 1. For any given

operator Ō on the lattice, we define a rotation transformation as Ri(Ō) where the index i

labels all the elements of the group GO.

Since a generic representation of the group will not be irreducible, in order to create

states that transform only in a given symmetry channel, we will need to create an appro-

– 4 –
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• basis of operators ➔

• matrix of correlators ➔

• generalised eigenvalue problem ➔

• ground state correlator fit (α=0) ➔

Glueball spectroscopy: variational analysis

Cij(t) =
X

⌧

h0|O†
i (⌧ + t)Oj(⌧)|0i

{O1(t), . . . ,On(t)}

Cij(t)v↵j = �↵v↵i

h�†
↵(t)�↵(0)i = |c↵|2

⇣
e�m↵t + e�m↵(T�t)

⌘

�↵(t) =
nX

i=1

v↵i Oi(t)

• the effective mass plateaux is used to determine the fitting window on the correlator



The scalar glueball Preliminary
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Conclusions and future directions

• States in the isosinglet scalar channel have been investigated with gluonic 
operators, those coupling to glueballs in a pure gauge theory

• The ground and the first excited state are heavier than the isotriplet vector 
meson in the mass region explored

• Contributions due to multi-pion states become relevant in the light mass 
region

• Finite volume effects are being investigated for the lightest mass point on a 
483x96 lattice

• A fermionic isosinglet scalar correlator, including the disconnected diagram, is 
being measured to address the mixing with the ground state



Thanks for your attention


